✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,
代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
蛇群优化算法(Snake Swarm Optimization, SSO)是一种基于仿生学原理的优化算法,它模拟了蛇群在捕食过程中的行为,通过模拟蛇群的觅食和追踪行为来寻找最优解。SSO算法具有全局寻优能力强、收敛速度快等优点,在实际问题中得到了广泛的应用。
XGBOOST是一种高效的集成学习算法,它在处理结构化数据和分类问题时表现出色。然而,当面对故障数据分类问题时,XGBOOST算法也面临着一些挑战,比如数据规模大、特征维度高、类别不平衡等问题,这些问题都会影响XGBOOST算法的分类性能。
本文针对故障数据分类问题,提出了一种基于蛇群优化算法优化XGBOOST的方法。首先,我们将故障数据进行预处理和特征提取,然后利用SSO算法对XGBOOST模型的超参数进行优化,最终得到一个性能更优的分类模型。
在实验中,我们使用了某工业设备的故障数据集进行验证,实验结果表明,优化后的XGBOOST模型在故障数据分类任务上取得了更好的性能,相比未优化的XGBOOST模型,分类准确率提升了10%以上,且在不同类别的分类精度均有所提升。
通过本文的研究,我们验证了蛇群优化算法在优化XGBOOST模型中的有效性,同时也为故障数据分类问题的解决提供了一种新的思路。未来,我们将进一步探索蛇群优化算法在其他机器学习模型中的应用,以及优化算法在其他实际问题中的应用潜力。
总之,本文的研究成果为优化XGBOOST模型提供了一种新的思路,同时也为故障数据分类问题的解决提供了一种新的解决方案,具有一定的理论和实际意义。希望本文的研究能够对相关领域的研究工作和实际应用具有一定的参考价值。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
t_train = ind2vec(T_train);
t_test = ind2vec(T_test );
⛳️ 运行结果
🔗 参考文献
[1] 贾皓阳,钱宇.基于贝叶斯优化XGBoost算法的变压器故障诊断[J].黄河水利职业技术学院学报, 2023, 35(2):37-43.
[2] 赵鹏东,张鹏,杜保华,等.一种基于贝叶斯优化XGBoost算法预警风电机组轴承故障的方法:CN202210421898.4[P].CN202210421898.4[2023-11-18].
[3] 张又文,冯斌,陈页,等.基于遗传算法优化XGBoost的油浸式变压器故障诊断方法[J].电力自动化设备, 2021, 41(2):7.DOI:10.16081/j.epae.202012021.