✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
杂草的存在会对农作物造成严重的损失,及时有效的杂草检测对于提高农作物产量至关重要。本文提出了一种基于机器视觉的杂草检测系统,该系统利用深度学习技术,可以准确地检测出农田中的杂草。
介绍
杂草是农作物生产中的主要问题之一,它们与农作物争夺养分、水分和阳光,导致农作物减产。传统的人工杂草检测方法效率低、成本高,难以满足大规模农田的检测需求。
机器视觉技术为杂草检测提供了新的解决方案。机器视觉系统通过图像采集、图像处理和目标识别等技术,可以自动检测出农田中的杂草。
系统设计
本文提出的杂草检测系统主要包括以下几个模块:
-
**图像采集:**使用无人机或地面机器人等设备采集农田图像。
-
**图像预处理:**对采集到的图像进行预处理,包括图像增强、降噪和分割等操作。
-
**特征提取:**从预处理后的图像中提取杂草的特征,例如颜色、纹理和形状等。
-
**分类器训练:**使用深度学习技术训练一个杂草分类器,该分类器可以根据提取的特征识别杂草。
-
**杂草检测:**将训练好的分类器应用于新的图像,检测出其中的杂草。
结论
本文提出的基于机器视觉的杂草检测系统是一种高效、准确的杂草检测方法。该系统可以帮助农民及时发现和处理杂草,提高农作物产量,为现代农业的发展提供技术支持。可以利用颜色特征来区分杂草与作物。
-
**形状特征:**杂草与作物的形状特征不同,可以利用形状特征来区分杂草与作物。
结果显示
结果显示是杂草检测系统的重要组成部分。结果显示可以将杂草检测结果显示给用户。常见的杂草检测结果显示方法包括:
-
**图像标注:**在图像中标注杂草的位置和种类。
-
**列表显示:**将杂草检测结果以列表的形式显示出来。
-
**地图显示:**在地图上显示杂草分布情况。
📣 部分代码
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before main_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to main_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help main
% Last Modified by GUIDE v2.5 05-Mar-2024 23:59:14
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @main_OpeningFcn, ...
'gui_OutputFcn', @main_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before main is made visible.
function main_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to main (see VARARGIN)
% Choose default command line output for main
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% UIWAIT makes main wait for user response (see UIRESUME)
% uiwait(handles.figure1);
% --- Outputs from this function are returned to the command line.
function varargout = main_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类