【答题卡识别】基于机器视觉实现答题卡识别附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

答题卡识别在教育、考试和调查等领域有着广泛的应用。传统的答题卡识别方法主要依赖于人工判卷,效率低、准确率低。随着机器视觉技术的飞速发展,基于机器视觉的答题卡识别技术应运而生,具有效率高、准确率高、成本低等优点,已成为答题卡识别领域的研究热点。

机器视觉概述

机器视觉是一种计算机视觉技术,它使计算机能够像人眼一样“看”和“理解”图像。机器视觉系统主要包括图像采集、图像处理、图像分析和决策四个部分。

  • **图像采集:**使用摄像头或扫描仪将答题卡图像采集到计算机中。

  • **图像处理:**对采集到的图像进行预处理,如去噪、二值化、图像增强等,以提高图像质量。

  • **图像分析:**提取图像中的特征信息,如答题卡的轮廓、答题区域、选项标记等。

  • **决策:**根据提取的特征信息,判断答题区域的选项标记,并输出识别结果。

答题卡识别算法

基于机器视觉的答题卡识别算法主要分为两类:模板匹配法和特征提取法。

  • **模板匹配法:**将答题卡的标准模板与待识别答题卡图像进行匹配,通过计算匹配度来判断选项标记。该方法简单易用,但对答题卡的质量和位置要求较高。

  • **特征提取法:**提取答题卡图像中与选项标记相关的特征信息,如标记的形状、面积、质心等,然后根据这些特征信息进行识别。该方法对答题卡的质量和位置要求较低,识别准确率更高。

答题卡识别系统

基于机器视觉的答题卡识别系统主要包括以下模块:

  • **图像采集模块:**负责采集答题卡图像。

  • **图像处理模块:**负责对采集到的图像进行预处理。

  • **图像分析模块:**负责提取图像中的特征信息。

  • **决策模块:**负责根据特征信息判断选项标记。

  • **输出模块:**负责将识别结果输出到指定格式。

应用

基于机器视觉的答题卡识别技术已在教育、考试和调查等领域得到广泛应用。

  • **教育:**用于自动判卷,提高判卷效率和准确率。

  • **考试:**用于自动判卷,节省人工判卷时间和成本。

  • **调查:**用于自动统计调查问卷结果,提高统计效率和准确率。

优势

基于机器视觉的答题卡识别技术具有以下优势:

  • **效率高:**机器视觉系统可以快速处理大量答题卡图像,提高判卷效率。

  • **准确率高:**机器视觉系统可以准确识别选项标记,提高判卷准确率。

  • **成本低:**机器视觉系统成本较低,可以节省人工判卷成本。

  • **灵活性强:**机器视觉系统可以识别不同类型的答题卡,灵活性强。

总结

基于机器视觉的答题卡识别技术是一种高效、准确、低成本的答题卡识别方法,已在教育、考试和调查等领域得到广泛应用。随着机器视觉技术的不断发展,答题卡识别技术的准确率和效率还将进一步提高,为答题卡的自动判卷和统计提供更加可靠的解决方案。

📣 部分代码

%%  清空环境变量warning off             % 关闭报警信息close all               % 关闭开启的图窗clear                   % 清空变量clc                     % 清空命令行%%  导入数据res = xlsread('数据集.xlsx');%%  划分训练集和测试集temp = randperm(357);P_train = res(temp(1: 240), 1: 12)';T_train = res(temp(1: 240), 13)';M = size(P_train, 2);P_test = res(temp(241: end), 1: 12)';T_test = res(temp(241: end), 13)';N = size(P_test, 2);%%  数据归一化[P_train, ps_input] = mapminmax(P_train, 0, 1);P_test = mapminmax('apply', P_test, ps_input);

⛳️ 运行结果

🔗 参考文献

[1]王子民,赵子涵,冯梦婷,等.基于机器视觉的答题卡识别系统设计[J].南京理工大学学报(自然科学版), 2022(004):046.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值