✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
答题卡识别在教育、考试和调查等领域有着广泛的应用。传统的答题卡识别方法主要依赖于人工判卷,效率低、准确率低。随着机器视觉技术的飞速发展,基于机器视觉的答题卡识别技术应运而生,具有效率高、准确率高、成本低等优点,已成为答题卡识别领域的研究热点。
机器视觉概述
机器视觉是一种计算机视觉技术,它使计算机能够像人眼一样“看”和“理解”图像。机器视觉系统主要包括图像采集、图像处理、图像分析和决策四个部分。
-
**图像采集:**使用摄像头或扫描仪将答题卡图像采集到计算机中。
-
**图像处理:**对采集到的图像进行预处理,如去噪、二值化、图像增强等,以提高图像质量。
-
**图像分析:**提取图像中的特征信息,如答题卡的轮廓、答题区域、选项标记等。
-
**决策:**根据提取的特征信息,判断答题区域的选项标记,并输出识别结果。
答题卡识别算法
基于机器视觉的答题卡识别算法主要分为两类:模板匹配法和特征提取法。
-
**模板匹配法:**将答题卡的标准模板与待识别答题卡图像进行匹配,通过计算匹配度来判断选项标记。该方法简单易用,但对答题卡的质量和位置要求较高。
-
**特征提取法:**提取答题卡图像中与选项标记相关的特征信息,如标记的形状、面积、质心等,然后根据这些特征信息进行识别。该方法对答题卡的质量和位置要求较低,识别准确率更高。
答题卡识别系统
基于机器视觉的答题卡识别系统主要包括以下模块:
-
**图像采集模块:**负责采集答题卡图像。
-
**图像处理模块:**负责对采集到的图像进行预处理。
-
**图像分析模块:**负责提取图像中的特征信息。
-
**决策模块:**负责根据特征信息判断选项标记。
-
**输出模块:**负责将识别结果输出到指定格式。
应用
基于机器视觉的答题卡识别技术已在教育、考试和调查等领域得到广泛应用。
-
**教育:**用于自动判卷,提高判卷效率和准确率。
-
**考试:**用于自动判卷,节省人工判卷时间和成本。
-
**调查:**用于自动统计调查问卷结果,提高统计效率和准确率。
优势
基于机器视觉的答题卡识别技术具有以下优势:
-
**效率高:**机器视觉系统可以快速处理大量答题卡图像,提高判卷效率。
-
**准确率高:**机器视觉系统可以准确识别选项标记,提高判卷准确率。
-
**成本低:**机器视觉系统成本较低,可以节省人工判卷成本。
-
**灵活性强:**机器视觉系统可以识别不同类型的答题卡,灵活性强。
总结
基于机器视觉的答题卡识别技术是一种高效、准确、低成本的答题卡识别方法,已在教育、考试和调查等领域得到广泛应用。随着机器视觉技术的不断发展,答题卡识别技术的准确率和效率还将进一步提高,为答题卡的自动判卷和统计提供更加可靠的解决方案。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);
⛳️ 运行结果
🔗 参考文献
[1]王子民,赵子涵,冯梦婷,等.基于机器视觉的答题卡识别系统设计[J].南京理工大学学报(自然科学版), 2022(004):046.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类