✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
本文提出了一种基于随机森林(RF)的等级评价方法,该方法利用了RF强大的分类能力和鲁棒性,并结合了多种评价指标,对目标对象的等级进行综合评估。该方法具有准确性高、鲁棒性强、可解释性好的特点,可广泛应用于各种等级评价场景。
引言
等级评价在现实生活中有着广泛的应用,如学生成绩评定、员工绩效考核、产品质量评估等。传统等级评价方法通常依赖于专家打分或人工规则,存在主观性强、效率低、难以量化等问题。
近年来,机器学习技术在等级评价领域得到了广泛应用。其中,RF算法以其卓越的分类能力、鲁棒性和可解释性而备受关注。RF是一种集成学习算法,通过构建多个决策树并对它们的预测结果进行投票,从而提高分类准确性。
方法
本文提出的基于RF的等级评价方法主要包括以下步骤:
-
**数据收集:**收集与等级评价相关的特征数据,包括定量和定性特征。
-
**特征预处理:**对特征数据进行预处理,包括缺失值处理、异常值处理和特征缩放。
-
**模型训练:**使用RF算法训练分类模型,将特征数据映射到等级标签。
-
**模型评估:**使用交叉验证或留出法对模型进行评估,计算模型的准确率、召回率、F1值等评价指标。
-
**等级预测:**将新数据输入训练好的RF模型,预测其等级标签。
评价指标
为了全面评估等级评价模型的性能,本文采用了以下20多个评价指标:
-
**准确率:**正确预测的样本数占总样本数的比例。
-
**召回率:**真正例预测为真正例的样本数占所有真正例的比例。
-
**F1值:**准确率和召回率的调和平均值。
-
**ROC曲线:**受试者工作特征曲线,反映模型区分正负样本的能力。
-
**AUC:**ROC曲线下面积,衡量模型的整体分类能力。
-
**Kappa系数:**考虑了偶然因素的准确率,反映模型的实际分类能力。
-
**马修斯相关系数:**综合考虑了准确率、召回率和F1值,反映模型的整体性能。
-
**精确率:**预测为正例的样本中真正例的比例。
-
**灵敏度:**预测为负例的样本中真负例的比例。
-
**特异性:**预测为正例的样本中假正例的比例。
-
**负预测值:**预测为负例的样本中真负例的比例。
-
**似然比:**预测为正例的样本与预测为负例的样本的比值。
-
**对数损失:**衡量模型预测与真实标签之间的差异。
-
**交叉熵:**衡量模型预测的不确定性。
-
**信息增益:**衡量特征对分类结果的影响。
-
**基尼不纯度:**衡量数据集的杂乱程度。
-
**熵:**衡量数据集的不确定性。
-
**变异系数:**衡量数据集的离散程度。
-
**皮尔逊相关系数:**衡量两个变量之间的线性相关性。
-
**斯皮尔曼相关系数:**衡量两个变量之间的单调相关性。
实验结果
本文将提出的方法应用于多个实际等级评价数据集,包括学生成绩评定、员工绩效考核和产品质量评估。实验结果表明,该方法在准确率、召回率、F1值等主要评价指标上均取得了较好的性能。
讨论
基于RF的等级评价方法具有以下优点:
-
**准确性高:**RF算法具有强大的分类能力,能够有效区分不同等级。
-
**鲁棒性强:**RF算法对噪声和异常值具有较强的鲁棒性,能够在复杂数据环境下保持稳定的性能。
-
**可解释性好:**RF算法提供清晰的决策树结构,可以帮助理解模型的决策过程。
-
**指标丰富:**本文采用了多种评价指标,全面评估了模型的性能。
结论
本文提出了一种基于RF的等级评价方法,该方法利用了RF算法的强大分类能力和鲁棒性,并结合了多种评价指标,对目标对象的等级进行综合评估。该方法具有准确性高、鲁棒性强、可解释性好的特点,可广泛应用于各种等级评价场景。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);
⛳️ 运行结果
🔗 参考文献
[1]马瑾瑜,张贺,杨岚兴,等.一种基于随机森林分类器的代码评审人推荐系统及方法:CN202010373726.5[P].CN111428142A[2024-04-04].
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类