【光学】基于matlab绘制拉盖尔高斯光束

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

拉盖尔-高斯光束(Laguerre-Gaussian beam,简称LG光束)是一种非衍射光束,它在传播过程中保持其横向模式不变,这使得它在许多应用中具有独特的优势。本文将深入探讨拉盖尔-高斯光束的特性、产生方法和应用领域。

拉盖尔-高斯光束的特性

拉盖尔-高斯光束的横向模式可以用两个整数p和l来描述,其中p表示径向模态数,l表示角模态数。p和l的值决定了光束的强度分布和相位结构。

径向模态数p: 决定了光束在径向方向上的强度分布。p=0时,光束的强度分布呈高斯分布;p>0时,光束的强度分布会出现多个同心圆环,环的数量等于p。

角模态数l: 决定了光束在角方向上的强度分布和相位结构。l=0时,光束的强度分布呈圆形对称;l>0时,光束的强度分布会出现l个螺旋臂,螺旋臂的数量等于l。

拉盖尔-高斯光束的另一个重要特性是它具有轨道角动量(OAM)。OAM的大小与模态数l成正比,并且与光束的传播方向无关。OAM的存在使得拉盖尔-高斯光束能够携带信息,并被用于光学通信和量子信息处理等领域。

拉盖尔-高斯光束的产生方法

拉盖尔-高斯光束可以通过多种方法产生,例如:

  • 空间光调制器(SLM): SLM是一种可以改变光束相位的器件,通过在SLM上加载特定的相位图案,可以产生拉盖尔-高斯光束。

  • 螺旋相位板: 螺旋相位板是一种具有螺旋形相位结构的器件,通过将高斯光束穿过螺旋相位板,可以产生拉盖尔-高斯光束。

  • 全息衍射光栅: 全息衍射光栅是一种可以将光束衍射成特定图案的器件,通过设计特定的全息衍射光栅,可以产生拉盖尔-高斯光束。

拉盖尔-高斯光束的应用领域

拉盖尔-高斯光束在许多领域都有着重要的应用,例如:

  • 光学显微镜: 拉盖尔-高斯光束可以用于提高光学显微镜的分辨率和成像质量。

  • 光学镊: 拉盖尔-高斯光束可以用于操控微小颗粒,例如生物细胞和纳米粒子。

  • 光学通信: 拉盖尔-高斯光束可以用于增加光纤通信的信道容量。

  • 量子信息处理: 拉盖尔-高斯光束可以用于编码和传输量子信息。

总结

拉盖尔-高斯光束是一种独特的非衍射光束,它具有许多优异的特性,使其在许多应用领域具有巨大的潜力。随着研究的深入和技术的进步,拉盖尔-高斯光束将会在未来发挥越来越重要的作用。

⛳️ 运行结果

🔗 参考文献

[1]刘超,杨晓峰.基于量子Zeno效应下光学材料折射率的无损耗测量装置:CN201910629143.1[P].CN110455746A[2024-05-12].

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值