【图像重建】基于二维离散小波变换彩色图像分解与重构(含SNR)附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

一、引言

图像重建是数字图像处理领域中的重要课题,其目标是根据图像的降采样、压缩或噪声污染等操作后的数据,恢复原始图像信息。近年来,小波变换凭借其优越的时频局部化特性和多分辨率分析能力,在图像重建领域得到了广泛应用。本文将探讨基于二维离散小波变换的彩色图像分解与重构方法,并分析其信噪比(SNR)性能。

二、二维离散小波变换

二维离散小波变换(2D DWT)是将图像分解成不同尺度和方向的子带,每个子带对应于图像的不同频率信息。其核心思想是将图像通过一系列低通滤波器和高通滤波器进行滤波,然后对滤波结果进行下采样,得到不同尺度的近似系数和细节系数。

2.1 小波基选择

常用的二维小波基包括Haar小波、Daubechies小波、Symlet小波等。不同的小波基具有不同的特性,例如Haar小波计算速度快但逼近能力较差,Daubechies小波逼近能力强但计算速度较慢。

2.2 分解与重构

2D DWT的分解过程可以通过多次迭代进行,每次迭代将图像分解成四个子带:LL(近似)、LH(水平细节)、HL(垂直细节)和HH(对角细节)。重构过程则通过对各个子带进行上采样和滤波,然后进行合成来实现。

三、彩色图像分解与重构

彩色图像通常采用RGB颜色空间表示,可以将其分解成三个独立的通道:R(红色)、G(绿色)和B(蓝色)。对每个通道分别进行2D DWT分解,然后对分解后的子带进行处理,最后进行重构即可得到重建后的彩色图像。

3.1 噪声去除

在图像重建过程中,噪声去除是关键步骤之一。可以通过对分解后的子带进行阈值化处理来去除噪声。阈值化操作可以有效地去除高频噪声,同时保持图像的细节信息。

3.2 压缩与解压缩

对图像进行压缩可以减小存储空间和传输带宽。可以通过对分解后的子带进行量化和编码来实现压缩,解压缩则需要进行反量化和解码。

四、信噪比(SNR)分析

信噪比是衡量图像重建质量的重要指标,其定义为:

 

SNR = 10 * log10(P_signal / P_noise)

其中,P_signal 表示原始信号的功率,P_noise 表示噪声的功率。SNR越高,表示图像重建质量越好。

五、实验结果与分析

本文对不同图像进行了2D DWT分解与重构实验,并比较了不同小波基、分解层数和噪声水平对SNR的影响。实验结果表明,选择合适的小波基和分解层数可以有效地提高图像重建的质量,同时,对分解后的子带进行噪声去除可以显著提高SNR。

六、结论

基于二维离散小波变换的彩色图像分解与重构方法是一种有效且实用的图像重建方法。通过选择合适的小波基、分解层数和噪声去除策略,可以实现高质量的图像重建,并获得较高的SNR。该方法在图像压缩、噪声去除、图像融合等领域具有广泛的应用前景。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
2 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9  雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值