✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
无人机集群路径规划是近年来研究的热点,在军事侦察、灾难救援、环境监测等领域具有广泛应用前景。本文提出了一种基于蜣螂算法(DBO)的多无人机协同集群避障路径规划方法,该方法以路径长度、高度变化、威胁等级和转角成本为评价指标,旨在实现无人机集群在复杂环境下安全高效地完成任务。
1. 引言
随着无人机技术的不断发展,无人机集群已成为近年来研究的热点。多无人机协同作业能够有效提高任务效率,并具备更高的灵活性与鲁棒性。然而,在复杂环境中,如何规划安全、高效的路径,同时避免与障碍物和威胁区域发生碰撞,成为了无人机集群应用的关键挑战。
传统的路径规划方法,如A*算法、Dijkstra算法等,往往难以处理多无人机协同和复杂环境约束的问题。近年来,启发式算法,如粒子群算法、遗传算法等,在解决多无人机路径规划问题方面取得了一定的进展。然而,这些算法往往存在收敛速度慢、易陷入局部最优等缺点。
蜣螂算法(DBO)是一种新型的仿生优化算法,它模拟蜣螂的滚动行为,通过信息共享和协同合作,寻找最优路径。DBO算法具有全局搜索能力强、收敛速度快、抗噪声能力强等优点,非常适合解决多无人机路径规划问题。
本文提出了一种基于DBO算法的多无人机协同集群避障路径规划方法,该方法以路径长度、高度变化、威胁等级和转角成本为评价指标,旨在实现无人机集群在复杂环境下安全高效地完成任务。
2. 问题描述
本研究的目标是为一个由 N 个无人机组成的集群,在三维空间中规划一条从起点到终点的最优路径,同时满足以下约束条件:
-
路径长度最小化: 每个无人机的路径长度应尽可能短。
-
高度变化最小化: 无人机在飞行过程中,高度变化应尽可能小,以降低能量消耗。
-
威胁等级最小化: 无人机应尽可能避开危险区域,如雷达覆盖区域、敌方火力范围等。
-
转角成本最小化: 无人机在飞行过程中,转弯角度应尽可能小,以提高飞行效率。
-
碰撞避免: 无人机之间以及与障碍物之间应保持安全距离,避免发生碰撞。
3. 基于DBO算法的路径规划方法
3.1 蜣螂算法(DBO)
蜣螂算法是一种模拟蜣螂滚动行为的优化算法。蜣螂在寻找食物的过程中,会通过滚动粪球来搬运食物,并通过信息共享和协同合作来寻找最优路线。DBO算法的核心思想是:
-
随机初始化群体: 初始化一个由多个蜣螂个体组成的群体,每个个体代表一个潜在的解。
-
滚动操作: 每个蜣螂个体通过滚动粪球来探索解空间。滚动的方向和距离由蜣螂个体自身的信息和来自其他蜣螂个体的信息共同决定。
-
信息共享: 蜣螂个体之间通过信息素来进行信息共享。信息素的浓度反映了路径的优劣程度。
-
路径优化: 蜣螂个体通过滚动操作和信息共享来不断优化路径,最终找到最优解。
3.2 算法步骤
本研究基于DBO算法,提出了一个多无人机协同集群避障路径规划方法,算法步骤如下:
-
环境建模: 将三维空间环境建模为一个网格图,每个网格点代表一个可行位置,并根据威胁等级、高度变化成本和转角成本进行标注。
-
初始化蜣螂群体: 随机初始化一个由 N 个蜣螂个体组成的群体,每个个体代表一个无人机,并随机分配一个初始位置。
-
滚动操作: 每个蜣螂个体通过滚动粪球来探索解空间,粪球代表一个无人机的飞行轨迹。滚动操作包括以下步骤:
-
选择滚动方向: 每个蜣螂个体根据当前位置和信息素浓度选择滚动方向。
-
移动粪球: 每个蜣螂个体将粪球沿着选择的滚动方向移动到下一个网格点。
-
更新信息素: 每个蜣螂个体根据路径长度、高度变化成本、威胁等级和转角成本更新信息素浓度。
-
-
信息共享: 每个蜣螂个体与周围其他蜣螂个体共享信息素。
-
路径优化: 每个蜣螂个体根据信息素浓度调整滚动方向,以寻找更优的路径。
-
碰撞避免: 通过引入碰撞检测机制,确保每个蜣螂个体在滚动过程中与其他蜣螂个体以及障碍物保持安全距离。
-
终止条件: 当满足预设的迭代次数或所有蜣螂个体都收敛到同一解时,算法停止。
4. 实验与结果分析
为了验证该方法的有效性,本文进行了仿真实验,并与其他算法进行了比较。实验结果表明,该方法能够有效地规划多无人机集群的避障路径,并与其他算法相比,具有更优的路径长度、高度变化、威胁等级和转角成本。
5. 结论
本文提出了一种基于DBO算法的多无人机协同集群避障路径规划方法,该方法能够有效地解决多无人机协同路径规划问题,并考虑了路径长度、高度变化、威胁等级和转角成本等因素。实验结果表明,该方法具有较高的路径质量和效率,为多无人机集群的应用提供了重要的技术支持。
⛳️ 运行结果
🔗 参考文献
[1]隋东,杨振宇,丁松滨,等.基于EMSDBO算法的无人机三维航迹规划[J].系统工程与电子技术, 2024, 46(5):1756-1766.DOI:10.12305/j.issn.1001-506X.2024.05.28.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
2 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类