✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
随着信息技术的高速发展,语音信号的安全性变得越来越重要。传统的语音加密方法往往存在着易于破解、安全性不足等问题。为了提高语音信号的安全性,近年来,基于混沌理论和对称加密算法的语音加密方法逐渐成为研究热点。本文提出一种基于Logistics混沌映射和高级加密标准(AES)算法的语音信号加密解密方法,旨在通过结合混沌系统和对称加密算法的优势,实现更安全、更有效的语音信号加密。
1. 系统设计
本系统主要包括以下几个模块:
1.1 语音信号预处理模块
该模块主要负责对输入的语音信号进行预处理,包括降噪、分帧、加窗等操作,为后续的加密处理做好准备。
1.2 混沌密钥生成模块
该模块利用Logistics混沌映射生成加密密钥,该映射具有良好的混沌特性,如对初始条件的敏感性、遍历性、不可预测性等,能够有效地抵抗攻击。
1.3 AES加密模块
该模块利用AES算法对预处理后的语音信号进行加密。AES算法是一种分组密码算法,具有高度的安全性,广泛应用于各种安全系统中。
1.4 解密模块
该模块利用相同的密钥,对加密后的语音信号进行解密,恢复原始语音信号。
2. 算法实现
2.1 Logistics混沌映射
Logistics混沌映射是典型的混沌系统,其表达式如下:
𝑥𝑛+1=𝑟𝑥𝑛(1−𝑥𝑛)
2.2 混沌密钥生成
利用Logistics混沌映射生成加密密钥,具体步骤如下:
-
选择初始条件 𝑥0x0 和系统参数 r。
-
利用 Logistics 映射迭代生成一系列混沌序列。
-
对混沌序列进行截取和量化,生成密钥。
2.3 AES 加密解密
AES 加密解密流程如下:
-
将语音信号分成若干个分组,每个分组长度为 128 位。
-
利用密钥和初始向量(IV)对每个分组进行加密。
-
将加密后的分组拼接起来,形成加密后的语音信号。
解密过程与加密过程类似,只是将加密过程逆转。
3. 系统性能测试
为了测试系统的性能,我们进行了如下实验:
-
对不同类型的语音信号进行加密解密测试,包括英文语音、中文语音、噪声语音等。
-
测试系统的加密解密速度和密钥敏感性。
-
测试系统对各种攻击的抵抗能力,包括统计攻击、穷举攻击等。
实验结果表明,该系统具有以下优点:
-
加密解密速度快,能够满足实时语音通信的需求。
-
密钥敏感性高,能够有效地防止密钥破解。
-
对各种攻击的抵抗能力强,能够保证语音信号的安全性。
4. 结论
本文提出了一种基于 Logistics 混沌映射和 AES 算法的语音信号加密解密方法,该方法通过结合混沌系统和对称加密算法的优势,实现了更安全、更有效的语音信号加密。该系统在加密解密速度、密钥敏感性和抗攻击能力方面都表现出了良好的性能,能够应用于各种需要语音安全保障的场景。
⛳️ 运行结果
🔗 参考文献
唐素娟,张定会. 音频的混沌置乱加密[J]. 数据通信,2013,(01):36-37.
陈雪松,申美玲. 基于Lorenz混沌加密的DWT音频水印算法[J]. 科学技术与工程,2011,11(07):1590-1595.
[1]肖慧娟,丘水生,邓成良.基于混沌映射和AES算法的图像加密方案[J].计算机工程, 2007, 33(23):3.DOI:10.3969/j.issn.1000-3428.2007.23.053.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
2 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类