✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
1. 绪论
随着全球能源需求的不断增长和环境问题的日益严峻,发展清洁可再生能源成为了全球共识。光伏发电作为一种高效、环保的能源利用方式,近年来得到了飞速发展。然而,光伏发电量受天气因素影响较大,具有明显的波动性,准确预测光伏发电量对于提高光伏电站的运营效率、促进电力系统稳定运行具有重要意义。
近年来,深度学习技术在时间序列预测领域取得了显著进展。其中,时间卷积网络TCN、双向门控循环单元BiGRU和注意力机制成为了主流的预测方法。TCN能够有效地捕捉时间序列中的长程依赖关系,BiGRU能够同时学习正向和反向时间序列信息,注意力机制能够突出关键特征,提高预测精度。
然而,现有的光伏发电量预测方法存在一些不足,如模型参数难以优化、对噪声敏感等问题。为了解决这些问题,本文提出了一种基于白鲸优化算法BWO优化时间卷积双向门控循环单元融合注意力机制TCN-BiGRU-Attention的光伏数据回归预测模型。
2. 模型细节
2.1 时间卷积网络TCN
TCN是一种基于卷积神经网络的时序模型,它通过堆叠多个卷积层来捕捉时间序列中的长程依赖关系。TCN的主要特点包括:
- 因果卷积: 卷积操作只使用过去的信息,避免了未来信息泄露。
- 膨胀卷积: 通过膨胀卷积核,TCN能够以指数级增长的方式扩展感受野,捕捉长程依赖关系。
- 残差连接: 残差连接可以缓解梯度消失问题,提高模型的训练效率。
2.2 双向门控循环单元BiGRU
BiGRU是GRU的一种扩展,它包含两个方向的GRU单元,分别从正向和反向学习时间序列信息。BiGRU能够同时考虑时间序列的过去和未来信息,提高模型的预测精度。
2.3 注意力机制
注意力机制能够选择性地关注输入序列中的重要部分,突出关键特征,提高模型的预测精度。本文采用的是自注意力机制,它能够捕捉输入序列之间的相互关系,提高模型对时间序列特征的理解能力。
2.4 白鲸优化算法BWO
BWO算法是一种新型的元启发式优化算法,它模拟了白鲸在海洋中的觅食行为。BWO算法具有以下优点:
- 全局搜索能力强: BWO算法能够有效地探索搜索空间,找到全局最优解。
- 参数少: BWO算法的参数设置简单,易于实现。
- 收敛速度快: BWO算法的收敛速度快,能够在较短的时间内找到最优解。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
2 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类