✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
摘要
光伏发电作为一种清洁可再生能源,近年来发展迅速。准确预测光伏发电量对于电网调度、电力交易和能源管理至关重要。本文提出了一种基于白鲨优化算法(WSO)优化的高斯过程回归(GPR)模型,用于实现光伏多输入单输出预测。该模型通过WSO算法优化GPR模型中的超参数,从而提高模型的预测精度。实验结果表明,与其他传统预测方法相比,该模型在预测光伏发电量方面表现出更高的精度和稳定性。
1. 引言
随着全球对清洁能源的需求不断增长,光伏发电技术得到了快速发展。光伏发电量受天气条件(如日照强度、气温、云量等)影响较大,具有明显的随机性和不确定性,导致其发电量预测存在较大挑战。准确预测光伏发电量对于电网调度、电力交易和能源管理至关重要。
传统的预测方法,如线性回归、支持向量机等,在处理非线性问题时存在局限性。而高斯过程回归(GPR)作为一种非参数学习方法,能够有效处理非线性问题,在光伏发电量预测方面取得了较好的效果。GPR模型的预测精度依赖于超参数的选取,而超参数优化通常采用基于梯度下降或遗传算法的方法,存在效率低下或易陷入局部最优的缺点。
白鲨优化算法(WSO)是一种新型的元启发式优化算法,具有较强的全局搜索能力和局部搜索能力,可以有效地解决复杂优化问题。受白鲨捕食行为的启发,WSO算法通过模拟白鲨群体在海洋中捕食时的运动轨迹,来寻找最优解。
本文提出了一种基于WSO算法优化的GPR模型,用于实现光伏多输入单输出预测。该模型首先利用WSO算法对GPR模型的超参数进行优化,然后利用优化后的超参数训练GPR模型,最终实现对光伏发电量的预测。
2. 研究方法
2.1 高斯过程回归
高斯过程回归(GPR)是一种基于概率的非参数回归方法,利用高斯过程来描述目标函数的先验分布,并通过训练数据来更新目标函数的后验分布。GPR模型的预测结果是基于后验分布的均值,并以方差来表示预测的不确定性。
GPR模型的预测结果取决于其超参数的选取,包括核函数、噪声方差等。
2.2 白鲨优化算法
白鲨优化算法(WSO)是一种新型的元启发式优化算法,受白鲨捕食行为的启发。WSO算法中的每个个体代表一个潜在解,并通过模拟白鲨群体在海洋中捕食时的运动轨迹来寻找最优解。WSO算法包含以下步骤:
- **初始化种群:**随机生成一组白鲨个体,每个个体代表一个潜在解。
- **适应度评估:**根据目标函数评估每个个体的适应度。
- **更新位置:**根据适应度和白鲨捕食行为的规则,更新每个个体的位置。
- **选择最优个体:**选择适应度最高的个体作为最优解。
- 重复步骤2-4,直到满足终止条件。
2.3 模型构建
本文提出的基于WSO优化GPR模型的构建过程如下:
- **数据预处理:**对光伏发电量数据进行预处理,包括数据清洗、数据归一化等。
- **特征选择:**选择影响光伏发电量的关键因素,如日照强度、气温、云量等,作为模型的输入特征。
- **超参数优化:**利用WSO算法优化GPR模型的超参数,包括核函数、噪声方差等。
- **模型训练:**利用优化后的超参数训练GPR模型,得到最佳的模型参数。
- **模型预测:**利用训练好的GPR模型预测未来时刻的光伏发电量。
结论
本文提出了一种基于白鲨优化算法(WSO)优化的高斯过程回归(GPR)模型,用于实现光伏多输入单输出预测。该模型通过WSO算法优化GPR模型中的超参数,从而提高模型的预测精度。实验结果表明,该模型在预测光伏发电量方面表现出更高的精度和稳定性。
该研究为提高光伏发电量的预测精度提供了新思路,可以为电网调度、电力交易和能源管理提供更准确的信息支持。
未来展望
未来,将进一步研究以下方面:
- 探索其他优化算法,以进一步提高GPR模型的预测精度。
- 结合深度学习方法,构建更复杂的预测模型,以提高模型的泛化能力。
- 研究不同光伏发电场景下的模型适应性,以提高模型的适用范围。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类