✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
一、引言
虹膜识别作为一种生物识别技术,因其具有高精度、高可靠性、非侵入性和不易伪造等优点,近年来在身份认证、安全控制、门禁系统等领域得到了广泛应用。虹膜识别技术主要包括虹膜图像获取、虹膜图像预处理、虹膜特征提取和虹膜特征匹配四个步骤。其中,虹膜图像分割是虹膜识别系统中至关重要的一个环节,其目的是将虹膜区域从眼球图像中准确地分离出来,为后续特征提取和匹配奠定基础。
二、Daughman算法原理
Daughman算法是目前应用最为广泛的虹膜分割算法之一,其基于圆形瞳孔和椭圆形虹膜的假设,通过对图像进行梯度运算和边缘检测,利用Hough变换找出瞳孔和虹膜的中心和半径,从而实现虹膜区域的分割。该算法主要分为以下步骤:
1. 灰度化与预处理 * 将彩色图像转换为灰度图像,降低数据量,简化计算。 * 对灰度图像进行高斯滤波,去除噪声,平滑图像。
2. 瞳孔检测 * 对预处理后的灰度图像进行梯度运算,得到图像梯度信息。 * 利用Sobel算子或Canny算子进行边缘检测,提取图像边缘信息。 * 使用Hough变换检测圆形,找到瞳孔的中心和半径。
3. 虹膜检测 * 对图像进行梯度运算,得到图像梯度信息。 * 使用Hough变换检测椭圆,找到虹膜的中心和半径。 * 确定虹膜的外边界,排除眼睑、睫毛等干扰因素。
4. 虹膜区域提取 * 根据瞳孔和虹膜的中心和半径,将虹膜区域从图像中提取出来。
三、Matlab代码实现
以下代码展示了基于Daughman算法的虹膜分割的Matlab实现:
% 加载虹膜图像
img = imread('iris.jpg');
% 灰度化与预处理
gray_img = rgb2gray(img);
gray_img = imgaussfilt(gray_img, 2);
% 瞳孔检测
[center, radius] = imfindcircles(gray_img, [10, 50], 'ObjectPolarity', 'bright');
pupil_center = center(1,:);
pupil_radius = radius(1);
% 虹膜检测
[center, radius] = imfindcircles(gray_img, [50, 150], 'ObjectPolarity', 'dark');
iris_center = center(1,:);
iris_radius = radius(1);
% 显示结果
figure;
imshow(img);
title('原始图像');
figure;
imshow(iris_region);
title('虹膜区域');
四、实验结果与分析
实验表明,基于Daughman算法的虹膜分割方法能够有效地从眼球图像中分割出虹膜区域,准确率较高。然而,该算法也存在一些局限性:
-
对图像质量要求较高,对于模糊、光线不足的图像,分割效果会受到影响。
-
对眼睑、睫毛等干扰因素的识别效果有限,可能会导致分割结果出现偏差。
-
运算量较大,实时性较差。
五、结论
Daughman算法是一种经典的虹膜分割算法,在虹膜识别系统中具有重要作用。然而,该算法也存在一些不足,需要进一步改进和完善。未来,研究人员将继续探索更高效、更鲁棒的虹膜分割算法,以提高虹膜识别系统的性能和可靠性。
⛳️ 运行结果
🔗 参考文献
[1]付鑫.基于小波分析的虹膜识别技术研究[D].西安科技大学[2024-07-21].DOI:10.7666/d.d095359.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类