【虹膜识别】基于Daughman算法的分割虹膜识别附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

物理应用        机器学习

🔥 内容介绍

一、引言

虹膜识别作为一种生物识别技术,因其具有高精度、高可靠性、非侵入性和不易伪造等优点,近年来在身份认证、安全控制、门禁系统等领域得到了广泛应用。虹膜识别技术主要包括虹膜图像获取、虹膜图像预处理、虹膜特征提取和虹膜特征匹配四个步骤。其中,虹膜图像分割是虹膜识别系统中至关重要的一个环节,其目的是将虹膜区域从眼球图像中准确地分离出来,为后续特征提取和匹配奠定基础。

二、Daughman算法原理

Daughman算法是目前应用最为广泛的虹膜分割算法之一,其基于圆形瞳孔和椭圆形虹膜的假设,通过对图像进行梯度运算和边缘检测,利用Hough变换找出瞳孔和虹膜的中心和半径,从而实现虹膜区域的分割。该算法主要分为以下步骤:

1. 灰度化与预处理 * 将彩色图像转换为灰度图像,降低数据量,简化计算。 * 对灰度图像进行高斯滤波,去除噪声,平滑图像。

2. 瞳孔检测 * 对预处理后的灰度图像进行梯度运算,得到图像梯度信息。 * 利用Sobel算子或Canny算子进行边缘检测,提取图像边缘信息。 * 使用Hough变换检测圆形,找到瞳孔的中心和半径。

3. 虹膜检测 * 对图像进行梯度运算,得到图像梯度信息。 * 使用Hough变换检测椭圆,找到虹膜的中心和半径。 * 确定虹膜的外边界,排除眼睑、睫毛等干扰因素。

4. 虹膜区域提取 * 根据瞳孔和虹膜的中心和半径,将虹膜区域从图像中提取出来。

三、Matlab代码实现

以下代码展示了基于Daughman算法的虹膜分割的Matlab实现:

% 加载虹膜图像
img = imread('iris.jpg');

% 灰度化与预处理
gray_img = rgb2gray(img);
gray_img = imgaussfilt(gray_img, 2);

% 瞳孔检测
[center, radius] = imfindcircles(gray_img, [10, 50], 'ObjectPolarity', 'bright');
pupil_center = center(1,:);
pupil_radius = radius(1);

% 虹膜检测
[center, radius] = imfindcircles(gray_img, [50, 150], 'ObjectPolarity', 'dark');
iris_center = center(1,:);
iris_radius = radius(1);


% 显示结果
figure;
imshow(img);
title('原始图像');
figure;
imshow(iris_region);
title('虹膜区域');

四、实验结果与分析

实验表明,基于Daughman算法的虹膜分割方法能够有效地从眼球图像中分割出虹膜区域,准确率较高。然而,该算法也存在一些局限性:

  • 对图像质量要求较高,对于模糊、光线不足的图像,分割效果会受到影响。

  • 对眼睑、睫毛等干扰因素的识别效果有限,可能会导致分割结果出现偏差。

  • 运算量较大,实时性较差。

五、结论

Daughman算法是一种经典的虹膜分割算法,在虹膜识别系统中具有重要作用。然而,该算法也存在一些不足,需要进一步改进和完善。未来,研究人员将继续探索更高效、更鲁棒的虹膜分割算法,以提高虹膜识别系统的性能和可靠性。

⛳️ 运行结果

🔗 参考文献

[1]付鑫.基于小波分析的虹膜识别技术研究[D].西安科技大学[2024-07-21].DOI:10.7666/d.d095359.

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制🌈

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值