【独家首发】Matlab实现粒子群优化算法PSO优化Transformer-BiLSTM实现负荷数据回归预测

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用        机器学习

🔥 内容介绍

负荷预测是电力系统运行和管理的重要组成部分,准确的负荷预测可以提高电力系统的可靠性、经济性和安全性。近年来,深度学习技术在负荷预测领域取得了显著进展,其中Transformer和BiLSTM模型因其强大的时间序列特征提取能力而备受关注。然而,这些模型的超参数优化对于预测性能至关重要,传统的手动调整方法效率低下且难以找到最优解。为了克服这一挑战,本文提出了一种基于粒子群优化算法(PSO)的Transformer-BiLSTM模型超参数优化方法,并使用Matlab进行了实现。通过PSO算法自动寻优模型超参数,可以显著提升模型的预测精度,有效地提高负荷预测的准确性和可靠性。

1. 概述

负荷预测是指根据历史负荷数据和相关影响因素预测未来一段时间内的电力负荷。准确的负荷预测对于电力系统管理至关重要,可以有效地提高发电效率、降低运行成本、确保供电安全和稳定。传统的负荷预测方法主要依赖于统计学和时间序列分析,但这些方法在处理复杂的非线性时间序列数据时存在局限性。

近年来,深度学习技术以其强大的特征提取能力和非线性建模能力,在负荷预测领域取得了显著进展。Transformer和BiLSTM模型是两种常用的深度学习模型,它们在时间序列分析方面表现出色。Transformer模型能够有效地捕捉时间序列数据的长期依赖关系,而BiLSTM模型则可以提取序列中的双向信息。然而,这些深度学习模型的超参数对于预测性能至关重要,传统的手动调整方法效率低下且难以找到最优解。

为了克服这一挑战,本文提出了一种基于粒子群优化算法(PSO)的Transformer-BiLSTM模型超参数优化方法。PSO算法是一种启发式优化算法,它通过模拟鸟群觅食行为,可以有效地搜索全局最优解。通过PSO算法自动寻优Transformer-BiLSTM模型的超参数,可以显著提升模型的预测精度,有效地提高负荷预测的准确性和可靠性。

2. 模型框架

本文提出的负荷预测模型框架如图1所示。模型主要由三部分组成:数据预处理、Transformer-BiLSTM模型和PSO算法超参数优化。

2.1 数据预处理

数据预处理是负荷预测的关键步骤,它对模型的性能有着至关重要的影响。本文采用以下步骤进行数据预处理:

  • 数据清洗: 对原始数据进行缺失值处理、异常值检测和剔除等操作,保证数据质量。

  • 特征提取: 根据历史负荷数据和相关影响因素,提取特征变量,例如天气数据、节日信息、经济指标等。

  • 数据归一化: 对特征数据进行归一化处理,将数据范围缩放到0-1之间,提高模型训练效率。

  • 数据分割: 将数据划分为训练集、验证集和测试集,用于模型训练、评估和最终预测。

2.2 Transformer-BiLSTM模型

Transformer-BiLSTM模型由两部分组成:

  • Transformer层: Transformer层主要用于捕捉时间序列数据的长期依赖关系,它通过自注意力机制,可以有效地识别时间序列数据中的重要特征,并建立时间步之间的关联。

  • BiLSTM层: BiLSTM层主要用于提取时间序列数据的双向信息,它可以有效地捕捉时间序列数据的前向和后向依赖关系,并提高模型的预测精度。

2.3 PSO算法超参数优化

PSO算法是一种基于群体智能的优化算法,它模拟鸟群觅食行为,通过个体之间的相互学习和信息共享来搜索最优解。在本文中,PSO算法用于优化Transformer-BiLSTM模型的超参数,例如学习率、隐藏层单元数、注意力头数等。

PSO算法的工作原理如下:

  • 初始化种群: 随机生成多个粒子,每个粒子代表一组模型超参数。

  • 评估适应度: 对每个粒子进行模型训练和预测,并根据模型的预测误差计算适应度值。

  • 更新粒子位置: 根据适应度值,更新每个粒子的位置和速度,使其向更优解的方向移动。

  • 重复步骤2-3: 重复步骤2-3,直到找到最优解或达到最大迭代次数。

3. Matlab实现

本文使用Matlab实现了基于PSO算法的Transformer-BiLSTM模型超参数优化方法,具体步骤如下:

3.1 数据加载和预处理

首先,使用Matlab加载负荷数据,并进行数据清洗、特征提取、数据归一化和数据分割等预处理操作。

3.2 Transformer-BiLSTM模型构建

使用Matlab深度学习工具箱构建Transformer-BiLSTM模型,并根据模型结构和超参数配置网络层和训练参数。

3.3 PSO算法实现

使用Matlab编写PSO算法代码,定义粒子的位置、速度、适应度函数等参数,并实现粒子更新和适应度评估功能。

3.4 超参数优化

使用PSO算法对Transformer-BiLSTM模型的超参数进行优化,通过迭代搜索,找到最佳的超参数组合。

3.5 模型训练和评估

使用最佳超参数组合训练Transformer-BiLSTM模型,并使用测试集评估模型的预测性能,计算预测误差和相关指标。

4. 实验结果和分析

本文使用某地区真实电力负荷数据进行了实验验证,实验结果表明,基于PSO算法的Transformer-BiLSTM模型超参数优化方法可以显著提高模型的预测精度,有效地提高负荷预测的准确性和可靠性。

实验结果表明,基于PSO算法的超参数优化方法能够有效地提高Transformer-BiLSTM模型的预测精度,主要原因如下:

  • 全局最优搜索: PSO算法是一种全局最优搜索算法,可以有效地搜索模型超参数空间,找到全局最优解,提高模型预测精度。

  • 自动优化: PSO算法可以自动优化模型超参数,无需人工手动调整,提高了模型优化效率和可靠性。

5. 结论

本文提出了一种基于PSO算法的Transformer-BiLSTM模型超参数优化方法,并使用Matlab进行了实现。实验结果表明,该方法能够有效地提高模型的预测精度,有效地提高负荷预测的准确性和可靠性。该方法为电力系统负荷预测提供了新的思路和方法,具有重要的应用价值。

6. 未来工作

  • 研究更复杂的深度学习模型,进一步提高负荷预测精度。

  • 探索其他优化算法,例如遗传算法、模拟退火算法等,进一步提升超参数优化效率。

  • 将模型应用于实际电力系统中,验证模型的实际应用效果。

⛳️ 运行结果

📣 部分代码

%%  数据分析num_size = 0.8;                              % 训练集占数据集比例outdim = 2;                                  % 最后一列为输出num_samples = size(res, 1);                  % 样本个数res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)num_train_s = round(num_size * num_samples); % 训练集样本个数f_ = size(res, 2) - outdim;                  % 输入特征维度

🔗 参考文献

[1] 郑林江,龙颢.一种基于Transformer框架的多变量长序列时间序列预测模型的构建方法:CN202210162689.2[P].CN202210162689.2[2024-07-19].

[2] 蔡美玲,汪家喜,刘金平,等.基于Transformer GAN架构的多变量时间序列异常检测[J].中国科学:信息科学, 2023, 53(5):972-992.

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制🌈

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别

  • 7
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
粒子群算法-反向传播神经网络(PSO-BP)是一种使用粒子群算法PSO优化BP神经网络的方法,用于回归预测问题。下面是一个使用Matlab实现PSO-BP的代码示例: 首先,我们需要导入所需的Matlab工具箱,如Neural Network Toolbox和Particle Swarm Optimization Toolbox。 ```matlab % 导入数据集 data = load('data.csv'); % 将数据集存储在名为data.csv的文件中 X = data(:, 1:end-1); % 特征数据 y = data(:, end); % 目标数据 % 初始化BP神经网络 net = feedforwardnet([10 10]); % 创建一个包含两个隐藏层(每个隐藏层有10个神经元)的前馈型神经网络 net.trainFcn = 'trainlm'; % 设置BP神经网络的训练算法为Levenberg-Marquardt算法 % 创建粒子群算法对象 pso = psoptimset('Display', 'iter'); % 设置参数显示方式为迭代显示 % 定义适应度函数 fitness = @(x) validateBPNet(x, X, y); % 运行PSO-BP算法进行优化 [mse, best] = pso(fitness, 20, [], [], [], [], [-10 -10], [10 10], pso); % 验证BP神经网络 net = configure(net, X', y'); net.IW{1, 1} = best(1:10); net.LW{2, 1} = best(11:20); net.LW{3, 2} = best(21:30); net.b{1} = best(31:40); net.b{2} = best(41:50); net.b{3} = best(51:60); % 运行BP神经网络进行预测 y_pred = net(X'); % 显示预测结果 figure; plot(y, 'b'); hold on; plot(y_pred', 'r'); legend('实际值', '预测值'); xlabel('样本编号'); ylabel('值'); title('PSO-BP回归预测结果'); function mse = validateBPNet(x, X, y) net = feedforwardnet([10 10]); net.trainFcn = 'trainlm'; net = configure(net, X', y'); net.IW{1, 1} = x(1:10); net.LW{2, 1} = x(11:20); net.LW{3, 2} = x(21:30); net.b{1} = x(31:40); net.b{2} = x(41:50); net.b{3} = x(51:60); y_pred = net(X'); mse = mean((y - y_pred').^2); end ``` 在上述代码中,我们首先导入数据集,然后初始化了一个包含两个隐藏层的BP神经网络。接下来,我们创建了一个粒子群算法对象,并定义了适应度函数。然后,我们使用PSO-BP算法进行优化,得到了最佳的神经网络参数。最后,我们使用最佳参数配置的BP神经网络进行预测,并绘制了实际值和预测值之间的比较图。 这段代码实现PSO-BP方法用于回归预测问题的一个简单示例,你可以根据自己的需要进行修改和扩展。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值