【创新未发表】Matlab实现白鲸优化算法BWO-Kmean-Transformer-BiLSTM组合状态识别算法研究

   ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用        机器学习

🔥 内容介绍

摘要

状态识别作为复杂系统管理和控制的关键环节,其准确性和实时性至关重要。本文提出了一种基于白鲸优化算法(BWO)的K-means-Transformer-BiLSTM组合状态识别算法,并利用MATLAB进行仿真验证。该算法首先利用BWO算法优化K-means聚类算法,自动确定最佳聚类数并划分数据集;然后,使用Transformer模型提取时间序列特征,并将其输入到BiLSTM网络中进行状态识别。实验结果表明,该算法在多个数据集上的识别精度和效率均优于传统的K-means-BiLSTM算法,展现出优异的性能。

关键词:状态识别;白鲸优化算法;K-means;Transformer;BiLSTM

1. 绪论

随着工业自动化、智能制造和物联网技术的快速发展,对复杂系统状态的实时监测和准确识别提出了更高的要求。状态识别是指根据系统运行数据判断系统当前所处的状态,例如正常运行、故障状态或预警状态。准确的状态识别对于保障系统安全、提高效率、降低成本具有重要意义。

传统的机器学习方法,如支持向量机(SVM)、人工神经网络(ANN)等,在状态识别方面取得了较好的效果。然而,这些方法往往需要大量的训练数据,且对数据特征提取和模型参数调优依赖性较强。近年来,深度学习技术,尤其是循环神经网络(RNN)及其变体,在时间序列数据处理方面展现出强大的能力。然而,传统的RNN模型存在梯度消失和长距离依赖问题,难以有效提取时间序列中的长时依赖关系。

Transformer模型作为一种新型的深度学习模型,利用自注意力机制有效解决RNN模型的缺陷,在自然语言处理领域取得了巨大成功。将Transformer模型应用于时间序列数据处理,可以有效提取数据中的时间特征,提高状态识别的准确率。

2. 算法原理

本文提出的BWO-Kmean-Transformer-BiLSTM组合状态识别算法包含以下几个关键步骤:

(1) 数据预处理:对原始数据进行清洗和归一化处理,去除噪声和异常值,将数据范围归一化到[0,1]之间,以便于模型训练。

(2) 白鲸优化算法优化K-means聚类:利用BWO算法优化K-means聚类算法,自动确定最佳聚类数并划分数据集。BWO算法是一种新兴的群体智能优化算法,模拟白鲸在海洋中的觅食行为,具有全局搜索能力强、收敛速度快等优点。

(3) Transformer模型特征提取:使用Transformer模型提取时间序列数据中的特征,并将其输入到BiLSTM网络中进行状态识别。Transformer模型利用自注意力机制,可以有效提取数据中的长时依赖关系,提高特征提取能力。

(4) BiLSTM模型状态识别:BiLSTM网络是一种双向循环神经网络,可以同时从正向和反向两个方向学习时间序列数据,有效提取时间序列中的前后文信息,提高状态识别的准确率。

3. 算法流程

本文提出的BWO-Kmean-Transformer-BiLSTM组合状态识别算法流程如下:

(1) 数据预处理:对原始数据进行清洗和归一化处理。
(2) BWO算法优化K-means聚类:利用BWO算法优化K-means聚类算法,自动确定最佳聚类数并划分数据集。
(3) Transformer模型特征提取:使用Transformer模型提取时间序列数据中的特征。
(4) BiLSTM模型状态识别:将Transformer模型提取的特征输入到BiLSTM网络中进行状态识别。

4. 实验验证

为了验证本文提出的算法有效性,我们在多个公开数据集上进行了实验,并与传统的K-means-BiLSTM算法进行了对比。实验结果表明,本文提出的BWO-Kmean-Transformer-BiLSTM组合状态识别算法在多个数据集上的识别精度和效率均优于传统的K-means-BiLSTM算法,展现出优异的性能。

5. 结论

本文提出了一种基于白鲸优化算法的K-means-Transformer-BiLSTM组合状态识别算法,该算法通过BWO算法优化K-means聚类,并利用Transformer模型提取时间序列特征,最后使用BiLSTM网络进行状态识别。实验结果表明,该算法能够有效提高状态识别的准确率和效率。未来,我们将进一步研究该算法在不同领域中的应用,并探索更有效的特征提取方法,以进一步提高算法的性能。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制🌈

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值