✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
数字孪生脑作为近年来脑科学研究的热点领域,旨在通过构建逼真的数字模型来模拟大脑的结构和功能,为疾病诊断、治疗和脑机接口等应用提供新的思路和工具。而脑网络模型作为多种构建数字孪生脑的技术路径之一,凭借其独特的优势,在模拟全脑大尺度神经动力学方面发挥着重要作用。
脑网络模型的核心思想是利用神经群体模型 (Neural Mass Model, NMM) 来描述神经元群体平均活动的动态变化,并通过结构连接 (Structural Connectivity, SC) 将这些模型相互耦合,从而构建起一个完整的脑网络模型。SC 通常从弥散张量成像 (DTI) 数据中获得,它反映了不同脑区之间神经纤维连接的强度和方向。通过整合 SC 和 NMM,脑网络模型能够模拟不同脑区神经元群体的协同活动,从而反映全脑的动态变化。
该模型的优势体现在以下几个方面:
1. 多尺度模拟能力: 脑网络模型能够同时模拟神经元群体和脑区层面的活动,从而在微观和宏观层面之间架起一座桥梁,为理解大脑功能的复杂性提供新的视角。
2. 数据驱动和模型优化: 模型的参数可以通过比较模拟数据和实测数据的相似性进行优化。例如,通过 forward models 将模型模拟的大脑活动转化为模拟的功能磁共振 (fMRI) 或者脑电 (EEG) 数据,并与实际的 fMRI 或 EEG 数据进行比较,可以调整模型参数以提高模拟的精度。
3. 高效性和可扩展性: 相比于基于单个神经元模型的模拟方法,脑网络模型能够更加高效地模拟全脑的大尺度神经动力学,并具备良好的可扩展性,能够适应不同脑区和神经元类型的模拟需求。
尽管脑网络模型在构建数字孪生脑方面具有巨大潜力,但也面临着一些挑战:
1. 结构连接数据的局限性: DTI 数据只能提供神经纤维连接的粗略信息,无法完全反映神经元之间复杂的连接模式。
2. 神经群体模型的简化: NMM 通常是对神经元活动进行简化的描述,无法完全捕捉到神经元之间复杂的相互作用。
3. 模型参数的复杂性: 脑网络模型包含大量的参数,需要大量的实验数据和优化算法才能进行准确的模型校准。
4. 对疾病和病理机制的理解: 尽管脑网络模型能够模拟大脑的正常活动,但对其在疾病状态下的应用仍需进一步研究,以充分理解疾病病理机制和寻找有效的治疗方案。
未来,脑网络模型的发展方向主要集中在以下几个方面:
1. 更精确的结构连接数据: 利用更高分辨率的成像技术和更先进的分析方法,获得更精确的结构连接数据。
2. 更复杂的神经群体模型: 开发更精确的 NMM,以更全面地描述神经元之间的相互作用。
3. 更有效的模型优化算法: 开发更有效的模型参数优化算法,提高模型的准确性和效率。
4. 结合其他模型: 将脑网络模型与其他模型,例如神经元模型和脑血管模型,进行整合,构建更完整的数字孪生脑模型。
总而言之,脑网络模型作为一种重要的工具,为构建数字孪生脑提供了一种可行的方法。通过不断发展和完善,脑网络模型有望在未来为理解大脑功能、治疗神经疾病和开发脑机接口等领域做出更大的贡献
⛳️ 运行结果
🔗 参考文献
Kong, X., Kong, R., Orban, C. et al. Sensory-motor cortices shape functional connectivity dynamics in the human brain. Nat Commun 12, 6373 (2021). https://doi.org/10.1038/s41467-021-26704-y
Muldoon, Sarah Feldt et al. (2017). Data from: Stimulation-based control of dynamic brain networks [Dataset]. Dryad. https://doi.org/10.5061/dryad.8g4vp
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类