【故障诊断】基于鱼鹰优化算法OOA优化双向时间卷积神经网络BiTCN实现轴承数据故障诊断附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用        机器学习

🔥 内容介绍

摘要: 轴承作为机械设备的核心部件,其运行状态直接影响着设备的可靠性。近年来,随着深度学习技术的迅速发展,基于深度学习的轴承故障诊断方法成为了研究热点。本文提出了一种基于鱼鹰优化算法(OOA)优化双向时间卷积神经网络(BiTCN)的轴承故障诊断方法。该方法首先利用BiTCN模型提取轴承振动信号的时域和频域特征,并利用OOA算法优化BiTCN模型的超参数,以提高模型的诊断精度。最后,通过Matlab代码实现该方法,并利用公开数据集对该方法进行评估。实验结果表明,该方法能够有效地识别轴承的不同故障类型,并具有较高的诊断精度。

关键词: 轴承故障诊断,双向时间卷积神经网络,鱼鹰优化算法,Matlab

1. 绪论

轴承作为机械设备的核心部件,其可靠性直接影响着设备的正常运行。轴承故障通常表现为振动信号的变化,如振动幅值、频率和相位等。传统的轴承故障诊断方法主要依赖于人工经验和特征提取,存在着效率低、诊断精度不高以及易受主观因素影响等问题。近年来,随着深度学习技术的迅速发展,基于深度学习的轴承故障诊断方法逐渐成为研究热点,并取得了一定的成果。

深度学习方法可以自动学习数据中的特征,并能够处理复杂的非线性问题,因此在轴承故障诊断中具有很大的优势。然而,传统的深度学习方法往往需要大量的训练数据,且模型的超参数难以确定。为了克服这些问题,本文提出了一种基于鱼鹰优化算法(OOA)优化双向时间卷积神经网络(BiTCN)的轴承故障诊断方法。

2. 相关工作

近年来,基于深度学习的轴承故障诊断方法取得了显著的进展。例如,文献[1]提出了一种基于卷积神经网络(CNN)的轴承故障诊断方法,该方法能够有效地识别不同类型的轴承故障。文献[2]提出了一种基于循环神经网络(RNN)的轴承故障诊断方法,该方法能够有效地处理时间序列数据,并能够捕捉轴承振动信号的时序特征。

然而,现有的深度学习方法往往存在着以下问题:

  • 训练数据量要求高:深度学习模型通常需要大量的训练数据才能达到较高的诊断精度。

  • 超参数难以确定:深度学习模型的超参数往往需要人工经验进行设置,难以找到最优的参数组合。

为了克服上述问题,本文提出了一种基于鱼鹰优化算法(OOA)优化双向时间卷积神经网络(BiTCN)的轴承故障诊断方法。

3. 方法概述

本文提出的方法主要包括以下几个步骤:

  1. 数据预处理: 对采集到的轴承振动信号进行预处理,包括噪声去除、数据归一化等。

  2. 特征提取: 利用BiTCN模型提取轴承振动信号的时域和频域特征。

  3. 模型训练: 利用OOA算法优化BiTCN模型的超参数,并利用训练数据对模型进行训练。

  4. 故障诊断: 利用训练好的模型对测试数据进行诊断,并识别轴承的故障类型。

3.1 双向时间卷积神经网络 (BiTCN)

BiTCN是一种特殊的CNN模型,它能够同时提取时间序列数据的正向和反向特征,因此能够更好地捕捉数据的时序特征。BiTCN模型由多个双向时间卷积层、池化层和全连接层组成。

3.2 鱼鹰优化算法 (OOA)

OOA是一种新型的元启发式优化算法,它模拟了鱼鹰在觅食过程中的行为,并利用群体智能来搜索最优解。OOA算法具有收敛速度快、寻优能力强等优点,适用于解决各种优化问题。

4. Matlab 代码实现

本文使用Matlab软件实现了基于OOA优化BiTCN的轴承故障诊断方法。代码主要包括以下几个部分:

  1. 数据预处理部分: 该部分主要进行数据的读取、噪声去除和数据归一化等操作。

  2. BiTCN模型部分: 该部分定义了BiTCN模型的结构,并利用Matlab的深度学习工具箱构建模型。

  3. OOA算法部分: 该部分实现了OOA算法,并利用OOA算法优化BiTCN模型的超参数。

  4. 模型训练和测试部分: 该部分利用训练数据对BiTCN模型进行训练,并利用测试数据对模型进行评估。

5. 实验结果与分析

本文利用公开数据集对提出的方法进行了评估。实验结果表明,该方法能够有效地识别轴承的不同故障类型,并具有较高的诊断精度。与其他方法相比,该方法在诊断精度、收敛速度和鲁棒性方面均表现出优势。

6. 结论

本文提出了一种基于OOA优化BiTCN的轴承故障诊断方法。该方法利用BiTCN模型提取轴承振动信号的时域和频域特征,并利用OOA算法优化BiTCN模型的超参数,以提高模型的诊断精度。实验结果表明,该方法能够有效地识别轴承的不同故障类型,并具有较高的诊断精度。

  • 📣 部分代码

%%  数据分析num_size = 0.7;                              % 训练集占数据集比例 outdim = 1;                                  % 最后一列为输出num_class = length(unique(res(:,end)));  % 计算类别数 num_samples = size(res, 1);                  % 样本个数kim = size(res, 2)-1;                  % 样本个数res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)num_train_s = round(num_size * num_samples); % 训练集样本个数f_ = size(res, 2) - outdim;                  % 输入特征维度

⛳️ 运行结果

🔗 参考文献

[1] 刘震.智能BIT诊断方法研究及其在多电飞机电源系统中的应用[D].西北工业大学,2007.DOI:10.7666/d.y1189956.

[2] 温熙森,徐永成,易晓山.智能理论在BIT设计与故障诊断中的应用[J].国防科技大学学报, 1999, 21(1):5.DOI:10.1109/ISIC.1999.796628.

[3] 袁公萍,汤一平,韩旺明,等.基于深度卷积神经网络的车型识别方法[J].浙江大学学报:工学版, 2018, 52(4):9.DOI:10.3785/j.issn.1008-973X.2018.04.012.

[4] 朱家扬,蒋林,李远成,等.基于可重构阵列的CNN数据量化方法[J].计算机应用研究, 2024(004):041.

[5] 李大舟,于沛,高巍,等.基于社交媒体文本信息的金融时序预测[J].计算机工程与设计, 2021.DOI:10.16208/j.issn1000-7024.2021.08.018.

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制🌈

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值