✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
摘要: 轴承作为机械设备的核心部件,其运行状态直接影响着设备的可靠性。近年来,随着深度学习技术的迅速发展,基于深度学习的轴承故障诊断方法成为了研究热点。本文提出了一种基于鱼鹰优化算法(OOA)优化双向时间卷积神经网络(BiTCN)的轴承故障诊断方法。该方法首先利用BiTCN模型提取轴承振动信号的时域和频域特征,并利用OOA算法优化BiTCN模型的超参数,以提高模型的诊断精度。最后,通过Matlab代码实现该方法,并利用公开数据集对该方法进行评估。实验结果表明,该方法能够有效地识别轴承的不同故障类型,并具有较高的诊断精度。
关键词: 轴承故障诊断,双向时间卷积神经网络,鱼鹰优化算法,Matlab
1. 绪论
轴承作为机械设备的核心部件,其可靠性直接影响着设备的正常运行。轴承故障通常表现为振动信号的变化,如振动幅值、频率和相位等。传统的轴承故障诊断方法主要依赖于人工经验和特征提取,存在着效率低、诊断精度不高以及易受主观因素影响等问题。近年来,随着深度学习技术的迅速发展,基于深度学习的轴承故障诊断方法逐渐成为研究热点,并取得了一定的成果。
深度学习方法可以自动学习数据中的特征,并能够处理复杂的非线性问题,因此在轴承故障诊断中具有很大的优势。然而,传统的深度学习方法往往需要大量的训练数据,且模型的超参数难以确定。为了克服这些问题,本文提出了一种基于鱼鹰优化算法(OOA)优化双向时间卷积神经网络(BiTCN)的轴承故障诊断方法。
2. 相关工作
近年来,基于深度学习的轴承故障诊断方法取得了显著的进展。例如,文献[1]提出了一种基于卷积神经网络(CNN)的轴承故障诊断方法,该方法能够有效地识别不同类型的轴承故障。文献[2]提出了一种基于循环神经网络(RNN)的轴承故障诊断方法,该方法能够有效地处理时间序列数据,并能够捕捉轴承振动信号的时序特征。
然而,现有的深度学习方法往往存在着以下问题:
-
训练数据量要求高:深度学习模型通常需要大量的训练数据才能达到较高的诊断精度。
-
超参数难以确定:深度学习模型的超参数往往需要人工经验进行设置,难以找到最优的参数组合。
为了克服上述问题,本文提出了一种基于鱼鹰优化算法(OOA)优化双向时间卷积神经网络(BiTCN)的轴承故障诊断方法。
3. 方法概述
本文提出的方法主要包括以下几个步骤:
-
数据预处理: 对采集到的轴承振动信号进行预处理,包括噪声去除、数据归一化等。
-
特征提取: 利用BiTCN模型提取轴承振动信号的时域和频域特征。
-
模型训练: 利用OOA算法优化BiTCN模型的超参数,并利用训练数据对模型进行训练。
-
故障诊断: 利用训练好的模型对测试数据进行诊断,并识别轴承的故障类型。
3.1 双向时间卷积神经网络 (BiTCN)
BiTCN是一种特殊的CNN模型,它能够同时提取时间序列数据的正向和反向特征,因此能够更好地捕捉数据的时序特征。BiTCN模型由多个双向时间卷积层、池化层和全连接层组成。
3.2 鱼鹰优化算法 (OOA)
OOA是一种新型的元启发式优化算法,它模拟了鱼鹰在觅食过程中的行为,并利用群体智能来搜索最优解。OOA算法具有收敛速度快、寻优能力强等优点,适用于解决各种优化问题。
4. Matlab 代码实现
本文使用Matlab软件实现了基于OOA优化BiTCN的轴承故障诊断方法。代码主要包括以下几个部分:
-
数据预处理部分: 该部分主要进行数据的读取、噪声去除和数据归一化等操作。
-
BiTCN模型部分: 该部分定义了BiTCN模型的结构,并利用Matlab的深度学习工具箱构建模型。
-
OOA算法部分: 该部分实现了OOA算法,并利用OOA算法优化BiTCN模型的超参数。
-
模型训练和测试部分: 该部分利用训练数据对BiTCN模型进行训练,并利用测试数据对模型进行评估。
5. 实验结果与分析
本文利用公开数据集对提出的方法进行了评估。实验结果表明,该方法能够有效地识别轴承的不同故障类型,并具有较高的诊断精度。与其他方法相比,该方法在诊断精度、收敛速度和鲁棒性方面均表现出优势。
6. 结论
本文提出了一种基于OOA优化BiTCN的轴承故障诊断方法。该方法利用BiTCN模型提取轴承振动信号的时域和频域特征,并利用OOA算法优化BiTCN模型的超参数,以提高模型的诊断精度。实验结果表明,该方法能够有效地识别轴承的不同故障类型,并具有较高的诊断精度。
-
📣 部分代码
%% 数据分析
num_size = 0.7; % 训练集占数据集比例
outdim = 1; % 最后一列为输出
num_class = length(unique(res(:,end))); % 计算类别数
num_samples = size(res, 1); % 样本个数
kim = size(res, 2)-1; % 样本个数
res = res(randperm(num_samples), :); % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度
⛳️ 运行结果
🔗 参考文献
[1] 刘震.智能BIT诊断方法研究及其在多电飞机电源系统中的应用[D].西北工业大学,2007.DOI:10.7666/d.y1189956.
[2] 温熙森,徐永成,易晓山.智能理论在BIT设计与故障诊断中的应用[J].国防科技大学学报, 1999, 21(1):5.DOI:10.1109/ISIC.1999.796628.
[3] 袁公萍,汤一平,韩旺明,等.基于深度卷积神经网络的车型识别方法[J].浙江大学学报:工学版, 2018, 52(4):9.DOI:10.3785/j.issn.1008-973X.2018.04.012.
[4] 朱家扬,蒋林,李远成,等.基于可重构阵列的CNN数据量化方法[J].计算机应用研究, 2024(004):041.
[5] 李大舟,于沛,高巍,等.基于社交媒体文本信息的金融时序预测[J].计算机工程与设计, 2021.DOI:10.16208/j.issn1000-7024.2021.08.018.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类