故障诊断迁移学习项目DDC(保姆教程)

本项目从零开始搭建深度领域混淆(Deep Domain Confusion,DDC)算法。项目包括加载CWRU轴承原始信号,信号处理、数据集制作,模型搭建,DDC域混淆算法设计、特征可视化,混淆矩阵等流程来帮助读者学习基于迁移学习的故障诊断。学懂本项目即可了解故障诊断之迁移学习的基本流程。本项目中[*所有程序代码包含详细的注释*],适合新生小白学习。

1.数据集介绍

1.1试验台介绍

CWRU凯斯西储大学数据集包括四种轴承不同轴承健康状态,即正常状态、内圈故障、外圈故障和滚动体故障。分别有7mils、14mils和21mils三种故障直径(1mils=0.0254mm)。该电动机在0hp、1hp、2hp、3hp四种不同的负载和1730r/min、1750r/min、1772r/min、1797r/min四种不同转速下收集振动信号。

图1. CWRU试验台

1.2采集信号样本介绍

(1)正常数据样本

Motor Load (HP)

Approx. Motor Speed (rpm)

Normal Baseline Data

0

1797

97.mat

1

1772

98.mat

2

1750

99.mat

3

1730

100.mat

(2)故障数据样本

故障直径

电机负载 (HP)

电机

转速 (rpm)

内圈

故障

滚珠故障

外圈故障

Centered
@6:00

Orthogonal
@3:00

Opposite
@12:00

0.007"

0

1797

105.mat

118.mat

130.mat

144.mat

156.mat

1

1772

106.mat

119.mat

131.mat

145.mat

158.mat

2

1750

107.mat

120.mat

132.mat

146.mat

159.mat

3

1730

108.mat

121.mat

133.mat

147.mat

160.mat

0.014"

0

1797

169.mat

185.mat

197.mat

*

*

1

1772

170.mat

186.mat

198.mat

*

*

2

1750

171.mat

187.mat

199.mat

*

*

3

1730

172.mat

188.mat

200.mat

*

*

0.021"

0

1797

209.mat

222.mat

234.mat

246.mat

258.mat

1

1772

210.mat

223.mat

235.mat

247.mat

259.mat

2

1750

211.mat

224.mat

236.mat

248.mat

260.mat

3

1730

212.mat

225.mat

237.mat

249.mat

261.mat

2.数据预处理

数据预处理部分主要是将原始信号划分为训练集和测试集,以用于训练模型。该部分包括:

  •  加载原始信号,从.mat原始数据中加载信号数据;
  • 信号分割,即将原始信号分割为多个样本;
  • 信号变换,将时域信号转换为频域信号;
  • 信号归一化,将信号进行归一化处理;
  • 信号重塑,将信号转换为[batch, channel, height, weight]的数据,以便于输入卷积模型;
  • 数据集生成,将每个类别的样本和标签进行拼接,组成一个完成的训练集。 

 图2. 信号预处理过程

2.1加载原始信号

从mat文件中加载原始的信号,如下图所示。

图3. 原始信号

2.2信号分割

从原始信号中随机采样n个样本长度为1024的样本,如下图所示。

图4. 截取的单个样本信号

2.3对原始信号进行FFT变换

图5. 时域信号变换为频域信号

2.4信号重塑

将长度为[1024]的一维频域信号重塑为[32, 32]的二维信号,如下图所示。

图6. 二维信号

 3.模型介绍

3.1模型结构介绍

本项目使用的轻量化模型主要由标准卷积(Conv1和Conv2)、轻量化特征提取块(Block1和Block2)和分组卷积GC组成,如图6所示,在网络最后一层施加MMD策略。

图7. 诊断模型结构

3.2模型结构参数介绍

具体的模型结构如表1所示,如果不理解可以查看ShuffleNet参考文献。

表1. 诊断模型详细结构参数

4.程序介绍

本项目包含的所有程序文件如下:

图8. DDC项目包含的所有文件

5.混淆矩阵

本项目根据模型保存的预测标签与真实标签来画混淆矩阵,DDC算法在0hp至0hp、0hp至1hp、0hp至2hp、0hp至3hp四个迁移任务中混淆矩阵如下,可以看出DDC在四个迁移任务中均取得了100%准确的分类结果。

图9. DDC在四个迁移任务中模型输出预测标签与真实标签混淆矩阵

6.特征可视化

本项目根据通过加载训练时保存的模型并抽取某一层特征,然后利用t-SNE算法对特征进行可视化,DDC算法在0hp至0hp、0hp至1hp、0hp至2hp、0hp至3hp四个迁移任务中特征可视化效果如下,可以看出DDC在四个迁移任务中均取得了良好的聚类效果。

7.项目包含的程序文件

项目文件具体包含以下具体文件:

完整项目获取:kk:1764619824

1. CWRU原始信号数据;

2. 数据预处理程序文件:该文件包含加载原始信号、样本采样、信号变换、信号归一化、样本打标签、生成训练集和测试集。

3. 自己搭建的诊断模型;

4.DDC域混淆算法程序文件,CWRU变工况诊断准确率可达100%

5. 模型训练与测试程序文件,该文件的功能包括:

  (1)保存最佳诊断模型;

  (2)保存最佳模型预测的分类标签;

  (3)保存模型的训练过程,包括训练集的损失和准确率、测试集的损失和准确率,以及总的训练损失。

  (4)项目使用深度域混淆算法DDC来优化模型。

6. 绘制混淆矩阵的程序文件,该文件可以读取保存的预测标签并绘制混淆矩阵;

7. 模型测试与特征抽取的程序文件,该文件可以:

   (1)加载4保存好的模型并进行测试模型的效果;

   (2)抽取模型提取的某一层特征,以便于特征可视化;

8. 特征可视化程序文件,该文件可以加载6抽取好的特征进行t-SNE可视化。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

追梦少年07

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值