【图像分割】基于动态阈值结合全局阈值算法实现图像分割附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,求助可私信。

🔥 内容介绍

图像分割作为计算机视觉领域一项基础且重要的任务,旨在将图像划分为若干具有语义意义的区域。其应用广泛,涵盖医学影像分析、遥感图像处理、目标识别等诸多领域。传统的图像分割方法,例如基于阈值的分割方法,因其计算效率高、易于实现而备受关注。然而,单一阈值分割方法在面对光照不均、图像对比度低等复杂场景时,往往难以取得理想的分割效果。本文将探讨一种结合动态阈值与全局阈值的图像分割算法,旨在提升分割精度和鲁棒性。

全局阈值法,例如Otsu算法,通过计算图像直方图,寻找一个最优阈值,将图像像素根据该阈值划分成前景和背景两部分。其优点在于计算简单、速度快,但其局限性也十分明显。全局阈值法假设图像的灰度分布具有双峰特性,且前景和背景的灰度差异显著。然而,实际图像往往存在光照不均、噪声干扰等问题,导致灰度分布复杂,全局阈值法难以准确地分割图像。

动态阈值法则考虑了图像局部区域的灰度差异,针对不同区域采用不同的阈值进行分割。常见的动态阈值方法包括基于局部方差、局部均值或局部熵的算法。这些方法通过滑动窗口或其他局部区域分析手段,计算每个像素点邻域内的统计特征,以此作为动态阈值进行分割。动态阈值法在一定程度上克服了全局阈值法的局限性,能够适应图像局部灰度变化,提高分割精度。然而,单纯的动态阈值法也存在一些问题,例如参数选择敏感、容易产生边缘模糊等现象。

为了结合全局阈值法和动态阈值法的优点,克服各自的不足,本文提出一种基于动态阈值结合全局阈值算法的图像分割方法。该方法首先利用Otsu算法或其他全局阈值法得到一个初始全局阈值。该全局阈值作为对图像整体灰度分布的一个粗略估计,为后续动态阈值计算提供一个参考基准。然后,采用基于局部方差的动态阈值法,计算每个像素点邻域内的方差。具体而言,以每个像素点为中心,设定一个大小为N×N的滑动窗口。在窗口内计算像素灰度的方差,并将其作为该像素点的动态阈值。为了避免仅依靠局部信息导致的分割偏差,我们引入全局阈值作为修正因子。将局部方差计算得到的动态阈值与全局阈值进行加权平均,得到最终的分割阈值:

该方法的关键在于加权系数 𝛼α 的确定。一种策略是根据图像的局部对比度自适应地调整 𝛼α 值。例如,当局部对比度高时,𝛼α 值可以设置较大,以突出局部细节;当局部对比度低时,𝛼α 值可以设置较小,以减少噪声的影响。另一种策略是根据预处理步骤中得到的图像噪声水平来确定 𝛼α 值。噪声水平越高,𝛼α 值应该越小,以降低噪声对分割结果的影响。

为了评估该算法的性能,我们可以采用多种评价指标,例如精确率、召回率、F1值、Dice系数等。通过与传统的全局阈值法和动态阈值法进行比较,可以验证该算法的有效性。此外,还可以通过在不同类型的图像上进行实验,测试该算法的鲁棒性。

综上所述,本文提出了一种结合动态阈值与全局阈值的图像分割算法。该算法通过将局部信息与全局信息进行融合,有效地克服了单一阈值法在复杂场景下的局限性,提高了分割精度和鲁棒性。未来研究可以进一步探索更优的加权系数 𝛼α 的确定方法,以及将该算法与其他先进的图像分割方法进行结合,以实现更准确、更鲁棒的图像分割效果。 此外,对于不同类型的图像,例如医学图像、遥感图像等,可以针对其特点进行算法参数的优化和调整,以达到最佳的分割效果。

📣 部分代码

MinThresh = Minmum(I); %求取最小误差法得到的阈值

%对图像分块:64*64,对每块采用最小误差求的每块的灰度值

blkImg = blkproc(I,[64 64],'Minmum'); 

I1 = medfilt2(blkImg,'symmetric');  %滤波

[m n]=size(I)

rec = imresize(I1,[m n],'bilinear'); %还原为1024*1024,采用双线性插值法

Out_img = zeros(m,n);  %动态阈值和极小值误差相结合

for i = 1:m

    for j=1:n

    temp = 0.7*rec(i,j)+0.3*MinThresh;

        if(I(i,j) > temp) 

            Out_img(i,j) = 255; 

        else

            Out_img(i,j) = 0; 

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制

擅长领域:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值