【DPFSP问题】基于龙格库塔优化算法RUN求解分布式置换流水车间调度(DPFSP附Matlab代码

 ✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。

🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

分布式置换流水车间调度问题(Distributed Permutation Flow Shop Scheduling Problem, DPFSP)是生产调度领域的一个经典而复杂的NP-hard问题,在现代制造系统中具有重要的应用价值。它不仅包含传统流水车间调度的复杂性,还引入了在多个工厂之间分配工件的决策维度。旨在最小化工件最大完工时间(makespan)的DPFSP问题对企业的生产效率、资源利用率及整体竞争力具有决定性影响。近年来,各种元启发式算法被用于求解这一难题,展现出良好的性能。本文深入研究了基于新颖的龙格库塔优化算法(Runge Kutta Optimization, RUN)求解DPFSP问题的方法。RUN算法模仿了经典的龙格库塔方法解决常微分方程的数值积分过程,通过引入“搜索和开发”概念,展现出独特的全局搜索和局部开发能力。本文详细阐述了DPFSP问题的数学模型,分析了其结构特点,并提出了将RUN算法应用于DPFSP问题的具体策略,包括编码方案、适应度函数设计以及RUN算法的各阶段操作在DPFSP问题情境下的实现细节。通过将DPFSP问题的离散搜索空间映射到RUN算法的连续寻优过程中,并设计有效的离散化策略,实现了RUN算法对DPFSP问题的求解。通过对一系列标准DPFSP算例进行实验验证,并将所得结果与现有文献中的一些经典或先进算法进行比较,评估了基于RUN算法求解DPFSP问题的有效性和竞争力。研究结果表明,基于RUN算法的求解方法在求解DPFSP问题时展现出良好的寻优能力和鲁棒性,为解决实际生产中的分布式调度问题提供了一种新的有效工具。

关键词: 分布式置换流水车间调度(DPFSP);龙格库塔优化算法(RUN);元启发式算法;优化;生产调度

1. 引言

生产调度是工业制造领域的核心环节,其目标在于合理分配有限的资源(如机器、人力)给待加工的工件,以优化特定的性能指标,例如最小化完工时间、最大化设备利用率或最小化生产成本。经典的流水车间调度问题(Flow Shop Scheduling Problem, FSSP)是调度理论中的一个基本模型,其中工件按相同的顺序经过一系列机器进行加工。而置换流水车间调度问题(Permutation Flow Shop Scheduling Problem, PFSP)是FSSP的一种特殊形式,要求所有机器上工件的处理顺序相同。PFSP已被证明是NP-hard问题,其计算复杂度随着工件数量和机器数量的增加呈指数级增长。

随着全球化生产和供应链的日益复杂,传统的单工厂调度模式已无法满足需求。分布式制造系统应运而生,其中生产任务分布在地理位置分散的多个工厂中。分布式置换流水车间调度问题(DPFSP)正是针对这种制造模式提出的调度问题。DPFSP不仅需要决定工件在每个工厂内的加工顺序(即置换流水线调度),更关键的是,还需要决定将哪些工件分配到哪个工厂进行加工。因此,DPFSP是一个双层决策问题:第一层是工件到工厂的分配,第二层是在每个工厂内部进行PFSP调度。DPFSP的目标通常是最小化所有工件的最大完工时间(makespan),即最后一个工件在所有工厂中完成的时间。由于其固有的复杂性,DPFSP也是一个典型的NP-hard问题。

解决DPFSP问题对于提高分布式制造系统的效率和响应速度至关重要。一个良好的调度方案可以显著缩短生产周期,降低库存成本,提高客户满意度。因此,研究高效的算法来解决DPFSP问题具有重要的理论意义和实际应用价值。

传统的精确算法(如分支定界法、动态规划)仅适用于小规模的DPFSP问题,对于大规模问题,其计算时间呈指数级增长,难以在可接受的时间内获得最优解。因此,研究基于元启发式算法的近似求解方法成为了解决DPFSP问题的主流方向。近年来,各种元启发式算法,如遗传算法(Genetic Algorithm, GA)、粒子群优化算法(Particle Swarm Optimization, PSO)、模拟退火算法(Simulated Annealing, SA)、蚁群优化算法(Ant Colony Optimization, ACO)以及各种新型算法(如人工蜂群算法、鲸鱼优化算法、灰狼优化算法等)被广泛应用于求解DPFSP问题,并取得了一定的成效。

龙格库塔优化算法(Runge Kutta Optimization, RUN)是由Ahmadianfar等人在2021年提出的一种新颖的元启发式算法。RUN算法受到经典的龙格库塔方法求解常微分方程数值解的启发,通过引入“搜索和开发”概念,模拟了数值积分过程中的步长调整和函数评估。RUN算法在连续优化问题上展现出优秀的性能,具有较强的全局搜索和局部开发能力。然而,将连续优化算法应用于离散组合优化问题(如DPFSP)需要巧妙的编码和解码机制。

本文旨在探索基于RUN算法求解DPFSP问题的有效性。我们将详细介绍DPFSP问题的数学模型,分析RUN算法的原理及其特点,并设计一套将RUN算法应用于DPFSP问题的求解框架。该框架包括将DPFSP问题的离散解空间映射到RUN算法的连续寻优过程中,以及设计有效的解码和局部搜索策略来提升解的质量。通过实验验证,我们将评估所提出方法的性能,并与现有文献中的方法进行比较。

本文的结构安排如下:第二节详细描述DPFSP问题的数学模型。第三节介绍龙格库塔优化算法(RUN)的原理和步骤。第四节提出基于RUN算法求解DPFSP问题的具体实现方案,包括编码、解码、适应度函数以及算法操作。第五节展示并分析实验结果,评估所提出方法的性能。第六节总结全文,并展望未来的研究方向。

⛳️ 运行结果

🔗 参考文献

[1] 连戈,朱荣,钱斌,等.超启发式人工蜂群算法求解多场景鲁棒分布式置换流水车间调度问题[J].控制理论与应用, 2023, 40(4):713-723.

[2] 韩雪.基于迭代贪婪算法的分布式置换流水车间调度问题研究[D].聊城大学,2023.

[3] 王永.分布式置换流水车间调度问题研究概述[J].机电信息, 2016(24):2.DOI:10.3969/j.issn.1671-0797.2016.24.087.

🎈 部分理论引用网络文献,若有侵权联系博主删除

本主页CSDN博客涵盖以下领域:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值