轻松用 Seaborn 进行数据可视化_10


1. `sns.jointplot(x = "total_bill", y = "tip", data = tips, color="purple")`


 


![](https://img-blog.csdnimg.cn/20190625213532313.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3podXNvbmd6aXll,size_16,color_FFFFFF,t_70)


图2


如上所述,散点图似乎显示总账单和小费金额之间的强相关性。 在它的顶部,我们可以看到各个变量的直方图。


#### 2.1 Jointplot :: kind =”hex”


直方图的双变量类比称为“hexbin”图,因为它显示了六边形区间内的观察计数。 此图对于相对较大的数据集最有效。 也称为Hexbin Plots。



> 
> sns.jointplot(x = , y =, data=, kind=”hex”)
> 
> 
> 




1. `# Jointplot - Scatterplot and Histogram`
2. `sns.jointplot(x = "total_bill", y = "tip", data = tips, kind ="hex",`
3. `color="lightcoral")`ips, kind ="hex",color="lightcoral")


![](https://img-blog.csdnimg.cn/20190625213542765.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3podXNvbmd6aXll,size_16,color_FFFFFF,t_70)


图3


有几种类型的值可以放在 sns.jointplot 中来创建不同的图。 默认情况下,联合分布图显示散点图。 现在,在上面的情节图中,它显示了六边形。 六边形的深色表示数据点的高密度,其中较浅的颜色表示较少的点。


kind 参数值可以是以下取值:



> 
> kind : { "scatter" | "reg" | "resid" | "kde" | "hex" }
> 
> 
> 


下面,我们来看看 kind="kde" 的情形。


#### 2.2 Jointplot :: kind =”kde”




1. `# Jointplot - Scatterplot and Histogram`
2. `sns.jointplot(x = tips["total_bill"], y = tips["tip"],kind = "kde",`
3. `color="purple") # contour plot`


 


![](https://img-blog.csdnimg.cn/20190625213555455.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3podXNvbmd6aXll,size_16,color_FFFFFF,t_70)


图4


上面显示的图表称为轮廓图。 轮廓图(有时称为“水平图”)是一种在二维平面上显示三维表面的方法。 它绘制了y轴上的两个预测变量X Y和轮廓的响应变量Z.


### 3 矩阵图 (Pairplot)


矩阵图基本上绘制了变量之间的成对关系。 它支持用 “hue” 来为类别变量绘图着色。



> 
> sns.pairplot(“dataframe”)
> 
> 
> 




1. `# Pairplot of Tips`
2. `sns.pairplot(tips, hue = "sex", palette="Set2")`
3. `# this  will color the plot gender wise`


 


![](https://img-blog.csdnimg.cn/2019062521360693.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3podXNvbmd6aXll,size_16,color_FFFFFF,t_70)


图5


下面我们来了解下矩阵图的含义。 对角线部分显示了具有核密度估计的 distplot图或直方图。 矩阵图的上部和下部显示散点图。 “hue”使用列的类别为绘图着色。


* hue = “sex” — 设置为按不同的性别进行着色
* palette = “Set2” - “Set2” 是颜色的一个系列。


### 4 条形图 (Barplot)


条形图用于绘制分类列和数字列。 它在可视化中创建了条形。 让我们用“性别”创建一个“total\_bill”的条形图,让我们看看哪类人支付更多。



> 
> sns.barplot(x = , y =, data=)
> 
> 
> 


 




1. `# Barplot`
2. `sns.barplot(x ="sex" , y ="total_bill" , data=tips)`
3. `# Inference - Total Bill Amount for males is more than Females.`


 


![](https://img-blog.csdnimg.cn/20190625213617323.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3podXNvbmd6aXll,size_16,color_FFFFFF,t_70)


图6


 




1. `# Lets Plot Smoker Vs Total Bill :: The purpose is to find out if`
2. `# Smokers pay more bill than Non Smokers`
3. `sns.barplot(x = "smoker", y = "total_bill", data =tips)`
4. `# Inference - More Bill for Smokers`


 


 


![](https://img-blog.csdnimg.cn/20190625213631455.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3podXNvbmd6aXll,size_16,color_FFFFFF,t_70)


图7


 




1. `# Lets Find If There is more Bill In Weekend or Weekdays`
2. `sns.barplot(x = "day", y = "total_bill", data =tips)`
3. `# People tend to visit more on weekends`


 


![](https://img-blog.csdnimg.cn/20190625213640989.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3podXNvbmd6aXll,size_16,color_FFFFFF,t_70)


图8


### 5 箱形图 (Boxplot)


箱形图 (Boxplot)是给定数据集的五点汇总统计的直观表示。 五个数字摘要包括:


* Minimum 最小值
* First Quartile 1/4 值
* Median (Second Quartile) 中位数
* Third Quartile 3/4 值
* Maximum 最大值


此外,值得注意的一点是,为分类 - 连续变量创建了一个箱线图,这意味着如果x轴是分类的并且y轴是连续的,则应创建箱线图或小提琴图。


让我们从 tips数据集创建一个 “day” 和 “total\_bill” 的箱线图。



> 
> sns.boxplot(x = , y =, data=)
> 
> 
> 




1. `# Boxplot`
2. `sns.boxplot(x = "day", y = "total_bill", data=tips)`


 


![](https://img-blog.csdnimg.cn/2019062521365720.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3podXNvbmd6aXll,size_16,color_FFFFFF,t_70)


图9


 




1. `# Add hue to split the barplot. Making it more fancier`
2. `sns.boxplot(x = "day", y = "total_bill", data=tips, hue = "smoker")`
3. `# On Friday people have more bill if they are a Non smoker vs smoker`


 


![](https://img-blog.csdnimg.cn/20190625213704664.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3podXNvbmd6aXll,size_16,color_FFFFFF,t_70)


图10


hue =“smoker”: - 它为吸烟者和非吸烟者创造了一个箱线图。 例如: 在星期五的情况下,可以清楚地看到,与当天的吸烟者相比,非吸烟者的食物费用更多。




1. `# Violin Plots`
2. `sns.violinplot(x = "day", y = "total_bill", data = tips)`


 


![](https://img-blog.csdnimg.cn/20190625213711122.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3podXNvbmd6aXll,size_16,color_FFFFFF,t_70)


图11


小提琴图跟箱形图有些类似。他们之间的描述可以参考下面的图示内容:

学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!



### 一、Python所有方向的学习路线



Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。



![](https://img-blog.csdnimg.cn/img_convert/9f49b566129f47b8a67243c1008edf79.png)



### 二、学习软件

工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。



![](https://img-blog.csdnimg.cn/img_convert/8c4513c1a906b72cbf93031e6781512b.png)



### 三、全套PDF电子书



书籍的好处就在于权威和体系健全,刚开始学习的时候你可以只看视频或者听某个人讲课,但等你学完之后,你觉得你掌握了,这时候建议还是得去看一下书籍,看权威技术书籍也是每个程序员必经之路。

![](https://img-blog.csdnimg.cn/img_convert/46506ae54be168b93cf63939786134ca.png)



### 四、入门学习视频

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。



![](https://img-blog.csdnimg.cn/afc935d834c5452090670f48eda180e0.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBA56iL5bqP5aqb56eD56eD,size_20,color_FFFFFF,t_70,g_se,x_16#pic_center)



### 五、实战案例



光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。



![](https://img-blog.csdnimg.cn/img_convert/252731a671c1fb70aad5355a2c5eeff0.png)



### 六、面试资料

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。



![](https://img-blog.csdnimg.cn/img_convert/6c361282296f86381401c05e862fe4e9.png)  

![](https://img-blog.csdnimg.cn/img_convert/d2d978bb523c810abca3abe69e09bc1a.png)




**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**

**[需要这份系统化学习资料的朋友,可以戳这里无偿获取](https://bbs.csdn.net/topics/618317507)**

**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值