1、F-score
1.1、
真阳性TP(True Positive):将正类预测为正类
假阴性FN(False Negative):将正类预测为负类
假阳性FP(False Positive):将负类预测位正类
真阴性TN(True Negative):将负类预测位负类
1.2、
精准率(Precision)= TP/(TP+FP)所有预测的正类中有多少真实标签为正样本
召回率(Recall) = TP/(TP+FN)所有真实标签为正的样本有多少被预测为正
| 检测阳性 | 检测阴性 | |
| 阳性 | 真阳性(100) | 假阴性(40) |
| 阴性 | 假阳性(20) | 真阴性(600) |
精准率=100/(100+20)=5/6
召回率=100/(100+40)=5/7
1.3、F-score综合考虑这两个指标:

最低0.47元/天 解锁文章
7010

被折叠的 条评论
为什么被折叠?



