F-score和ROC曲线评价方法

1、F-score

1.1、

真阳性TP(True Positive):将正类预测为正类

假阴性FN(False Negative):将正类预测为负类

假阳性FP(False Positive):将负类预测位正类

真阴性TN(True Negative):将负类预测位负类

1.2、

精准率(Precision)= TP/(TP+FP)所有预测的正类中有多少真实标签为正样本

召回率(Recall) = TP/(TP+FN)所有真实标签为正的样本有多少被预测为正

检测阳性 检测阴性
阳性 真阳性(100) 假阴性(40)
阴性 假阳性(20) 真阴性(600)

精准率=100/(100+20)=5/6

召回率=100/(100+40)=5/7

1.3、F-score综合考虑这两个指标:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

NDLilaco

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值