基本面因子(F-score)——投资组合分析(EAP.portfolio_analysis)

本文探讨了Piotroski的F-score如何作为基本面因子与估值指标结合,用于识别被高估和低估的股票。通过构建3*3的Fscore-BM分组投资组合,展示如何获取超额收益。数据来源于2000年的CSMAR数据集,并通过风险模型和因子模型调整验证了理论效果。
摘要由CSDN通过智能技术生成

实证资产定价(Empirical asset pricing)已经发布于Github和Pypi. 包的具体用法(Documentation)博主将会陆续在CSDN中详细介绍,也可以通过Pypi直接查看。

Pypi: pip install --upgrade EAP

Github: GitHub - whyecofiliter/EAP: empirical asset pricing
————————————————

价值投资通常是“以合理的价钱买入优质的公司要远胜于以便宜的价钱买入一般的公司”。有两种价值投资,一种是价值因子投资,价值因子投资是通过估值类指标进行股票选择,容易选出“伪价值”股。另一种是在价值因子上,将基本面考虑进来,关注公司未来的盈利能力和成长能力,试图找到优质且便宜的股票。在对基本面的研究中,和因子投资结合最为紧密的是Piotroski (2000)的F-score和Mohanram (2005)的G-score。

本文以Piotroski的F-score为例。F-score使用三大类(盈利能力、财务情况、经营效率)9个指标来度量公司的基本面情况。F-score按照这9个指标的打分情况来划分股票,具体地说,公司每满足一个指标就得一分,满分为9分,最低分为0分,得分越高的公司,基本面情况越好。

将F-score和盈利指标BM或PE结合起来,可以发现估值高但基本面不好的股票,也可以发现估

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值