第十一章
解:设四个面的电荷面密度分别为:,
,
,
。
由题可得:,
假设每个面产生的场强全部向右为正。
由静电平衡特性可得: ,
解,得,
若导体板上分别有电荷q,Q。则有,
解:
(1)由静电平衡可得:
又 , 且
,
(该式中q表示带+q那面的电荷量)
则可得 , 且:
最终:,
(2)
解:这里需要知道一个结论:球面外的电势与将电荷集中在球心的点电荷的电势相同。球面内的电势处处相等,为等势体。
(1)由电势叠加原理可得:
(2) 内表面电势:
电势差:
(3) 若外球壳接地,外球壳的电势为0,由静电平衡可知,内部状态不受外部影响而改变,则
解:,
可得:、
则,代入数据即可。
解:正电荷聚集在右半球面,负电荷聚集在左半球面。
解: 由,左端穿入,则
,右边穿出,则
,那么左端带负电,右端带正电。
解:电压断开后,q不变。
设两个容器的电容为C1,并联后的电容为:C=2C1
电量为:
改变电介质后,
电压为:
电势差容易得。
解:
(1)由 ,
得:
,其中
,
得:
(2)Q = CU =
(3),
得:
解:
(1),
,
(2),且
解:
第十二章
解:理解径向,即直径得方向。理解电阻公式中各个量的含义。
其中S来自电流密度定义式,表示 与电流方向垂直的面上的截面积,
来自电势定义式中的积分路径。
(1) 如图,径向上的路径为0.5到1,记每一小份为dr;电流密度中的S上一段有说,就是电流流过的那个面,对于径向来说面积为,
为导线长度。
(2)
解:理解上面所说,轻松可得:
解:
(1)
(2)大气距离地面的距离对于地球半径来说远远小,近似地球半径R。
不推导公式,直接记公式即可。
其中为P点到直线的距离。
不推导,公式如下
若点到圆面的距离为0,特殊地,有
解:O点在水平导线连线上,由毕-萨定理得:为0,所以水平导线对O的B为0
圆周上,先分析磁感应强度B的方向,由右手关系可知,半圆周上B朝里穿进去,即方向相同。
由上一题的公式可得,
解:
显然直线A,与直线B使用上面例1,弧AB是用上面例2。
解:书上有详细解答,直接记公式
解:逆时针转。
电荷随着圆盘的转动而产生电场,就好像半径从0到R有一圈一圈的电流在环绕。所以可以
电荷密度: 图中黑色单位圆环的面积:
,其中dr为宽度
单位面积上的单位电荷量:
将转换为
:
(
是旋转一圈的时间)
代入 中,得:
所以
方向为:
解:
(1),方向:
(2)记到P为
,P到
距离为
解: (B与L的方向重合)
解: 在长直螺线管线圈内的B方向为水平向右。线方向:abcda
其中,ab的线方向与B相同,cos = 1;ad、bc同B垂直,cos = 0;dc上没有B。
所以有: ( n为单位长度上的匝数)
则有:
解:
解:
r > R,有:
r < R,有:
解:设图中长方形的长度为 ,将长方形分割成宽度为dr的小长方形。
由上题知:
那么,小正方形的磁通量为:
长方形的磁通量为:
单位长度磁通量为:
第十三章
解:
(1)OA上每点速度不同,每一点的动生电动势:
方向为:A到O(右手螺旋定则:大拇指指向里,弯曲手指指向v,那么四指根的方向就指向了O,他是F,F给电荷一个洛伦兹力向0移动)
(2)圆盘转动时,将圆盘分成无数根OA并联,那么,电势差和上问相同。
解:
方向:C到A