物理电磁学考试例题解析

第十一章

解:设四个面的电荷面密度分别为:\sigma _{1}\sigma _{2}\sigma _{3}\sigma _{4}

由题可得:\sigma _{1}s+\sigma _{2}s=0\sigma _{3}s+\sigma _{4}s=0

假设每个面产生的场强全部向右为正。

由静电平衡特性可得:E_{12}=\frac{\sigma _{1}}{2s}-\frac{\sigma _{2}}{2s}-\frac{\sigma _{3}}{2s}-\frac{\sigma _{4}}{2s} = 0 ,   E_{34}=\frac{\sigma _{1}}{2s}+\frac{\sigma _{2}}{2s}+\frac{\sigma _{3}}{2s}-\frac{\sigma _{4}}{2s} = 0

解,得\sigma _{1}=\sigma _{4}=0\sigma _{2}=-\sigma _{3}=0

若导体板上分别有电荷q,Q。则有\sigma _{1}=\sigma _{4}=\frac{q+Q}{2S},\sigma _{2}=-\sigma _{3}=\frac{q-Q}{2S}

解:

(1)由静电平衡可得:q_{a}=q_{b}+q_{c}

又 U_{ac} = U_{ab},        且 E_{ab} = \frac{q_{ar}}{\varepsilon S}E_{ac} = \frac{q_{al}}{\varepsilon S}(该式中q表示带+q那面的电荷量)

 则可得 q_{al}=2q_{ar},        且:q_{al}=-q_{a},q_{ar}=-q_{b}

最终:q_{b} = -1*10^{-7}Cq_{c} = -2*10^{-7}C

(2)U_{ab}=\frac{\sigma }{\varepsilon }d_{2}=\frac{q_{c}}{\varepsilon S}d_{2}

解:这里需要知道一个结论:球面外的电势与将电荷集中在球心的点电荷的电势相同。球面内的电势处处相等,为等势体。

(1)由电势叠加原理可得:U = k(\frac{q}{R}-\frac{q}{R_{1}}+\frac{q+Q}{R_{2}})

   (2)  内表面电势:Uin = Uout = k(\frac{q}{R_{1}} -\frac{q}{R_{1}}+ \frac{q+Q}{R_{2}})=k\frac{q+Q}{R_{2}}

        电势差:U_{1} = kq(\frac{1}{R}+\frac{1}{R_{1}})

   (3)  若外球壳接地,外球壳的电势为0,由静电平衡可知,内部状态不受外部影响而改变,则

        U_{qiu} = kq(\frac{1}{R} - \frac{1}{R_{1}})

解:C=\frac{q}{U}E=\frac{q}{\varepsilon S}

可得:C= \frac{E\varepsilon S}{U}

\frac{C}{S} = \frac{E\varepsilon }{U},代入数据即可。

解:正电荷聚集在右半球面,负电荷聚集在左半球面。

解: 由P =\sigma,左端穿入,则\theta =\pi,右边穿出,则\theta =0,那么左端带负电,右端带正电。

解:电压断开后,q不变。

设两个容器的电容为C1,并联后的电容为:C=2C1

电量为:q =CU = 2C_{1}U

改变电介质后,C_{change}=(\varepsilon +1)C

电压为:U=\frac{q}{C_{change}} = \frac{2U}{\varepsilon+1 }

电势差容易得。

解:

(1)由 E = \frac{q}{\varepsilon d}C=\frac{q}{U}得:E=\frac{CU}{\varepsilon S},其中 \varepsilon = \varepsilon _{r}\varepsilon _{0},

         得:E=1.1*10^{-4}(V/m)

(2)Q = CU =5*10^{-9}C

(3)P = \sigma ^{​{}'}P=\chi _{e}\varepsilon _{0}E

         得:{\sigma }'=4.84*10^{-4} C/m^{2}

解:

(1)\sigma =\frac{q}{S}E=\frac{\sigma }{\varepsilon }=\frac{q}{\varepsilon \varepsilon _{r}S}\varepsilon _{r}= \frac{q}{\varepsilon SE}

(2)\sigma ^{​{}'}=\sigma (1-\frac{1}{\varepsilon _{r}}),且q=\sigma S

         q^{​{}'} = q(1-\frac{1}{\varepsilon _{r}})

解:

第十二章

解:理解径向,即直径得方向。理解电阻公式中各个量的含义R=\rho\frac{l}{S}

其中S来自电流密度j定义式,表示 与电流方向垂直的面上的截面积,l来自电势定义式中的积分路径。

(1)  如图,径向上的路径为0.5到1,记每一小份为dr;电流密度中的S上一段有说,就是电流流过的那个面,对于径向来说面积为2\pi rll为导线长度。

                              dR=\rho \frac{dr}{2\pi rl}

                               R = \int_{0.5*10^{-2}}^{1*10^{-2}}\rho \frac{dr}{2\pi rl}=2.2*10^{-8}\Omega

(2)I =\frac{U}{R}

解:理解上面所说,轻松可得:dR = \rho \frac{dr}{4\pi r^{2}}

                                                     R = \int_{R1}^{R2}\frac{dr}{4\pi r^{2}}=\frac{\rho }{4\varpi }(\frac{1}{r1}-\frac{1}{r2})

解:

(1)\rho =\frac{E}{j}

(2)大气距离地面的距离对于地球半径来说远远小,近似地球半径R。

        R=\frac{U}{I}=\frac{U}{4\pi R^{2}j}

不推导公式,直接记公式即可。

        B = \frac{\mu _{0}}{4\pi }\frac{I}{a}(cosa _{1}-cosa _{2})

其中a为P点到直线的距离。

不推导,公式如下

                                B=\frac{\mu _{0}IR^{2}}{2(x^{2}+R^{2})^{3/2}}

若点到圆面的距离为0,特殊地,有   B=\frac{\mu _{0}I}{2R}

 解:O点在水平导线连线上,由毕-萨定理得:Id\vec{l}\times \vec{r}为0,所以水平导线对O的B为0

圆周上,先分析磁感应强度B的方向,由右手关系可知,半圆周上B朝里穿进去,即方向相同。

由上一题的公式可得,B=\frac{1}{2}\frac{\mu _{0}I}{2R}

 解:

显然直线A,与直线B使用上面例1,弧AB是用上面例2。

E=\frac{1}{4}\frac{\mu _{0}I}{2R}+\frac{\mu _{0}}{2\pi }\frac{I}{R}

解:书上有详细解答,直接记公式

                        B=\frac{\mu _{0}nI}{2}(cos\beta _{2}-cos\beta _{1})

解:逆时针转。

        电荷随着圆盘的转动而产生电场,就好像半径从0到R有一圈一圈的电流在环绕。所以可以

        电荷密度:\frac{q}{\pi R^{2}}                图中黑色单位圆环的面积:2\pi rdr,其中dr为宽度    

        单位面积上的单位电荷量:\frac{q}{\pi R^{2}}\cdot 2\pi rdr

        将dI转换为drdI=\frac{q}{\pi R^{2}}\cdot \frac{2\pi}{T} rdr = \frac{q}{\pi R^{2}}\cdot wrdr=\frac{qwrdr}{\pi R^{2}} (T是旋转一圈的时间)

        代入   dB=\frac{\mu _{0}dI}{2r}中,得:dB = \frac{\mu _{0}qw}{2\pi R^{2}}dr

        所以  B = \frac{\mu _{0}qw}{2\pi R^{2}}\int_{0}^{R}dr = \frac{\mu _{0}qw}{2\pi R}

        方向为: \bigodot

解:

(1)B_{A} = \frac{\mu _{0}I_{1}}{2\pi \frac{d}{2}} + \frac{\mu _{0}I_{2}}{2\pi \frac{d}{2}} = 4\times 10^{-6} T,方向:\bigodot

(2)记I_{1}到P为x,P到I_{2}距离为 d-x

        B = \frac{\mu _{0}I}{2\pi x} + \frac{\mu _{0}I}{2\pi (d-x)}= \frac{\mu _{0}I}{2\pi }(\frac{1}{x}+\frac{1}{d-x})

        \Phi =\oint_{0.1}^{0.3}BdS = \oint_{0.1}^{0.3}\frac{\mu _{0}I}{2\pi }(\frac{1}{x}+\frac{1}{d-x})ldx = 2.2\times 10^{-6}Wb

 解:                        \oint_{L}^{}Bdl =2\pi rB= \mu _{0}I         (B与L的方向重合)

                                B=\frac{\mu _{0}I}{2\pi r}

解: 在长直螺线管线圈内的B方向为水平向右。线方向:abcda

                \oint_{L}^{}Bdl = \int_{a}^{b}Bdl+\int_{b}^{c}Bd+\int_{c}^{d}Bd+\int_{d}^{a}Bd

其中,ab的线方向与B相同,cos = 1;ad、bc同B垂直,cos = 0;dc上没有B。

所以有:        ​​​​​​​        ​​​​​​​        \int_{a}^{b}Bdl = B\overline{ab}=\mu _{0}I\cdot n\overline{ab}       ( n为单位长度上的匝数)

则有:        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​     B = \mu _{0}nI

         

解:        ​​​​​​​        \oint_{L}^{}Bdl = \int_{b}^{a}Bdl +\int_{d}^{c}Bdl = 2B\overline{ab}=\mu _{0}I\cdot n\overline{ab}

        ​​​​​​​        ​​​​​​​        ​​​​​​​        B=\frac{\mu _{0}nI}{2}

解:

r > R,有:        ​​​​​​​        \oint_{L}^{}Bdl = 2\pi rB = \mu _{0}I

                                            B = \frac{\mu _{0}I}{2\pi r}

r < R,有:                \oint_{L}^{}Bdl = 2\pi rB = \mu _{0}I\frac{r^{2}}{R^{2}}

                                            B=\frac{\mu _{0}I}{2\pi R^{2}}r

解:设图中长方形的长度为 l,将长方形分割成宽度为dr的小长方形。

        由上题知:        ​​​​​​​        ​​​  ​​​​B=\frac{\mu _{0}I}{2\pi R^{2}}r

        那么,小正方形的磁通量为:    d\Phi =BdS = Bldr

        长方形的磁通量为:        \Phi =\int_{0}^{R}\frac{\mu _{0}I}{2\pi R^{2}}rldr = \frac{\mu _{0Il}}{4\pi }

        单位长度磁通量为:        B = \frac{\mu _{0I}}{4\pi }

        

第十三章

解:

(1)OA上每点速度不同,每一点的动生电动势:

                                       d\varepsilon =vBdl = wlBdl

                                        \varepsilon =\int_{0}^{l}wB\cdot ldl = \frac{Bwl^{2}}{2}

        方向为:A到O(右手螺旋定则:大拇指指向里,弯曲手指指向v,那么四指根的方向就指向了O,他是F,F给电荷一个洛伦兹力向0移动)

(2)圆盘转动时,将圆盘分成无数根OA并联,那么,电势差和上问相同。

解:

        ​​​​​​​        ​​​​​​​        \varepsilon =\int_{a}^{a+L}(v\times B)dl=\int_{a}^{a+L}v\frac{\mu _{0}I}{2\pi l}dl=\frac{\mu _{0}Iv}{2\pi }ln\frac{a+L}{a}

                        方向:C到A                    

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值