DeepSeek模型架构及优化内容

DeepSeek

v1版本

模型结构

DeepSeek LLM基本上遵循LLaMA的设计:

采⽤Pre-Norm结构,并使⽤RMSNorm函数.

利⽤SwiGLU作为Feed-Forward Network(FFN)的激活函数,中间层维度为8/3. 去除绝对位置编码,采⽤了RoPE旋转位置编码。

为了优化推理成本. 67B模型使⽤分组查询注意⼒(GQA)⽽不是传统的多头注意⼒(MHA).

超参数设置

优化器:采⽤adamW优化器, β1=0.9, β2=0.95 ,weight_decay为0.1。

学习率策略:与Llama使⽤余弦学习率调度器不同,其采⽤的是多阶段学习率调度器。该策略通过 “预热-稳态-分阶衰减” 的耦合设计,兼顾训练稳定性、收敛效率与泛化性能。

  1. 预热阶段(0~2000步)学习率从较⼩初始值线性增⻓⾄峰值(如3e-4),通过渐进 式升温避免训练初期因梯度剧烈波动导致的权重震荡,为模型提供稳定的初始化环境。

  2. 稳定收敛阶段(2000步后⾄总训练token的80%)学习率保持峰值恒定,使模型在核 ⼼训练周期内充分利⽤⾼学习率的快速收敛能⼒,同时配合梯度截断(clip=1.0) 约束 梯度幅值,防⽌梯度爆炸并提升训练稳定

### DeepSeek 模型架构详解 #### 技术架构概述 DeepSeek系列模型通过不断迭代更新,在技术架构上实现了显著的进步。特别是在版本V3中,继承并进一步优化了前代版本中的有效设计[^2]。 #### 主要组件分析 - **输入层** 输入模块负责接收原始数据流,并对其进行初步预处理操作,确保后续各阶段能够高效运作。 - **编码器部分** 编码器采用多层神经网络结构来提取特征表示。这一过程对于捕捉复杂模式至关重要,尤其是在面对大规模语料库时表现尤为突出[^1]。 - **注意力机制** 注意力机制允许模型聚焦于最相关的上下文信息,从而提高理解和生成质量。这种特性有助于解决长依赖问题以及更好地应对不同长度序列间的映射关系。 - **解码器环节** 解码器基于编码后的向量重建目标输出。它不仅支持文本翻译等任务,还能灵活适应其他类型的转换需求。 - **自定义优化策略** 鉴于DeepSeek大模型较高的计算资源消耗特点,团队引入了一系列专门针对性能瓶颈而设的改进措施,旨在降低训练时间和硬件开销的同时保持甚至提升最终成果的质量。 ```python # Python伪代码展示简化版DeepSeek架构建流程 class DeepSeekModel(nn.Module): def __init__(self, config): super().__init__() self.encoder = Encoder(config.hidden_size) self.attention = AttentionMechanism() self.decoder = Decoder(config.vocab_size) def forward(self, input_ids, attention_mask=None): encoded_output = self.encoder(input_ids=input_ids, attention_mask=attention_mask) attended_output = self.attention(encoded_output) final_output = self.decoder(attended_output) return final_output ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值