PTA Huffman树及其应用题

本文介绍了霍夫曼树的基本概念,并通过一系列单选题讲解了霍夫曼树的特性,包括非叶结点的权值、完全二叉树的关系、编码后的文本字节数节省以及带权路径长度的计算。同时,提供了哈夫曼编码的译码实例和构建哈夫曼树时节点数量与叶节点数量的关系。
摘要由CSDN通过智能技术生成

单选题

1. 对N(N≥2)个权值均不相同的字符构造哈夫曼树。下列关于该哈夫曼树的叙述中,错误的是:

A 树中一定没有度为1的结点.

B.树中两个权值最小的结点一定是兄弟结点

C.树中任一非叶结点的权值一定不小于下一层任一结点的权值

D.该树一定是一棵完全二叉树

解析:Huffman树是带权路径最小的扩充二叉树,不一定是完全二叉树

2.设一段文本中包含字符{a, b, c, d, e},其出现频率相应为{3, 2, 5, 1, 1}。则经过哈夫曼编码后,文本所占字节数为:

A.40

B.36

C.25

D.12

3.设一段文本中包含4个对象{a,b,c,d},其出现次数相应为{4,2,5,1},则该段文本的哈夫曼编码比采用等长方式的编码节省了多少位数?

A.0

B.2

C.4

D.5

4.由分别带权为9、2、5、7的四个叶子结点构成一棵哈夫曼树,该树的带权路径长度为:

A.23

B.37

C

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值