【用Vscode实现简单的python爬虫】从安装到配置环境变量到简单爬虫以及python中pip和request,bs4安装_vscode安装爬虫插件

先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7

深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年最新Python全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
img
img



既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Python知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以添加V获取:vip1024c (备注Python)
img

正文

第一步:安装python包

可以默认,也可以选择自己想要安装的路径

python下载资源链接:

Download Python | Python.org

第二步:配置python环境变量,找到我的电脑->属性->高级->环境变量

找到python,新增

然后将刚刚安装的路径配置到path路径下:

特别注意,配置了环境变量后要进行重启电脑

然后cmd 运行 输入python命令,如果出现如下,则代表python安装配置成功

然后安装bs4 pip install bs4

同时安装pip install request

然后,vscode安装插件 Python、 Python Indent等

然后实现一个简单的爬虫,获取百度下的content,并打印出来

关于Python技术储备

学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

包括:Python激活码+安装包、Python web开发,Python爬虫,Python数据分析,Python自动化测试学习等教程。带你从零基础系统性的学好Python!

一、Python学习大纲

最后

🍅 硬核资料:关注即可领取PPT模板、简历模板、行业经典书籍PDF。
🍅 技术互助:技术群大佬指点迷津,你的问题可能不是问题,求资源在群里喊一声。
🍅 面试题库:由技术群里的小伙伴们共同投稿,热乎的大厂面试真题,持续更新中。
🍅 知识体系:含编程语言、算法、大数据生态圈组件(Mysql、Hive、Spark、Flink)、数据仓库、Python、前端等等。

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加V获取:vip1024c (备注python)
img

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
13437068303)]

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

  • 17
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
这是opencv svm图像分类的整个工程代码,在VS2010下打开即可。整个工程文件以及我的所有训练的图片存放在这里,需要的可以下载,自己在找训练图片写代码花了很多时间,下载完后自行解压,训练图片和测试图片可以从这免费下载http://download.csdn.net/detail/always2015/8944959,project data文件夹直接放在D盘就行,里面存放训练的图片和待测试图片,以及训练过程生成的间文件,现在这个下载object_classfication_end则是工程文件,我用的是vs2010打开即可,下面工程里有几个要注意的地方: 1、在这个模块使用到了c++的boost库,但是在这里有一个版本的限制。这个模块的代码只能在boost版本1.46以上使用,这个版本以下的就不能用了,直接运行就会出错,这是最需要注意的。因为在1.46版本以上对比CsSVM这个类一些成员函数做了一些私有化的修改,所以在使用该类初始化对象时候需要注意。 2、我的模块所使用到的函数和产生的间结果都是在一个categorizer类声明的,由于不同的执行阶段间结果有很多个,例如:训练图片聚类后所得到单词表矩阵,svm分类器的训练的结果等,间结果的产生是相当耗时的,所以在刚开始就考虑到第一次运行时候把他以文件XML的格式保存下来,下次使用到的时候在读取。将一个矩阵存入文本的时候可以直接用输出流的方式将一个矩阵存入,但是读取时候如果用输入流直接一个矩阵变量的形式读取,那就肯定报错,因为输入流不支持直接对矩阵的操作,所以这时候只能对矩阵的元素一个一个进行读取了。 3、在测试的时候,如果输入的图片太小,或者全为黑色,当经过特征提取和单词构造完成使用svm进行分类时候会出现错误。经过调试代码,发现上述图片在生成该图片的单词的时候所得到的单词矩阵会是一个空矩阵,即该矩阵的行列数都为0,所以在使用svm分类器时候就出错。所以在使用每个输入图片的单词矩阵的时候先做一个判断,如果该矩阵行列数都为0,那么该图片直接跳过。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值