首先,您需要wordnet
从 Python 终端中的 NLTK 下载器下载资源:
nltk.download(‘wordnet’)
下载后,您需要导入WordNetLemmatizer
该类并对其进行初始化:
from nltk.stem.wordnet import WordNetLemmatizer
lem = WordNetLemmatizer()
要使用词形还原器,请使用.lemmatize()
方法。它需要两个参数:单词和上下文。在我们的示例中,我们将使用“v”作为上下文。在查看方法的输出之后,让我们进一步探索上下文.lemmatize()
:
print(lem.lemmatize(‘constitutes’, ‘v’))
您会注意到该.lemmatize()
方法正确地将单词“构成”转换为其基本形式“构成”。您还会注意到词形还原比词干提取花费的时间更长,因为算法更复杂。
.lemmatize()
让我们检查如何以编程方式确定方法的第二个参数。NLTK 具有pos_tag()
帮助确定句子中单词上下文的功能。但是,您首先需要averaged_perceptron_tagger
通过 NLTK 下载器下载资源:
nltk.download(‘averaged_perceptron_tagger’)
接下来,导入pos_tag()
函数并在一句话上运行:
from nltk.tag import pos_tag
sample = “Hi, this is a nice hotel.”
print(pos_tag(word_tokenize(sample)))
您会注意到输出是对的列表。每对都由一个标记及其标记组成,它表示整个文本中标记的上下文。请注意,标点符号的标签本身就是:
[(‘Hi’, ‘NNP’),
(‘,’, ‘,’),
(‘this’, ‘DT’),
(‘is’, ‘VBZ’),
(‘a’, ‘DT’),<