ssd网络结构_环境感知技术入门(十二) 详细解读SSD目标检测框架

# This function is derived from torchvision VGG make_layers()
# https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py
def vgg(cfg, i, batch_norm=False):
    layers = []
    in_channels = i
    for v in cfg:
        if v == 'M':
            layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
        elif v == 'C':
            layers += [nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True)]
        else:
            conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
            if batch_norm:
                layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
            else:
                layers += [conv2d, nn.ReLU(inplace=True)]
            in_channels = v
    pool5 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
    conv6 = nn.Conv2d(512, 1024, kernel_size=3, padding=6, dilation=6)
    conv7 = nn.Conv2d(1024, 1024, kernel_size=1)
    layers += [pool5, conv6,
               nn.ReLU(inplace=True), conv7, nn.ReLU(inplace=True)]
    return layers

# 调用
if __name__ == "__main__":
    base = {
    
    '300': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'C', 512, 512, 512, 'M',
            512, 512, 512],
    '512': [],
    }
    vgg = nn.Sequential(*vgg(base['300'], 3))

1.2 深度卷积层

在VGG16基础上,SSD进一步增加4个深度卷积层(conv8 ~11)用于更高语意的特征提取, 从conv7到conv11卷积后的输出特征图尺寸依次为:19*19, 10*10, 5*5, 3*3, 1*1

# Extra layers added to VGG for feature scaling
def add_extras(cfg, i, batch_norm=False):
    layers = []
    in_channels = i
    flag = False
    for k, v in enumerate(cfg):
        if in_channels != 'S':
            if v == 'S':
                layers += [nn.Conv2d(in_channels, cfg[k + 1],
                           kernel_size=(1, 3)[flag], stride=2, padding=1)]
            else:
                layers += [nn.Conv2d(in_channels, v, kernel_size=(1, 3)[flag])]
            flag = not flag
        in_channels = v
    return layers

# 调用
if __name__ == "__main__":
    extras = {
    
    '300': [256, 'S', 512, 128, 'S', 256, 128, 256, 128, 256],
    '512': [],
    }
    layers = add_extras(extras['300'], 1024)

1.3 边框特征提取网络 Multi-box Layers

SSD一共有6层多尺度提取的网络(第4、7、8、9、10、11六个卷积层得到的特征图),每层分别对 loc 和 conf 进行卷积,得到相应的输出。

def multibox(vgg, extra_layers, cfg, num_classes):
    loc_layers = []
    conf_layers = []
    vgg_source = [21, -2]
    for k, v in enumerate(vgg_source):
        loc_layers += [nn.Conv2d(vgg[v].out_channels,


**自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。**

**深知大多数Linux运维工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!**

**因此收集整理了一份《2024年Linux运维全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。**
![img](https://img-blog.csdnimg.cn/img_convert/467215357fc2e9b66828728b94284ac3.png)
![img](https://img-blog.csdnimg.cn/img_convert/bf857f16d02994fcc0cbf3a4355e0f3c.png)
![img](https://img-blog.csdnimg.cn/img_convert/5513965161ff2b227c940bce4c5eaa89.png)
![img](https://img-blog.csdnimg.cn/img_convert/7ff39670423eb1e09562766af6936e27.png)
![img](https://img-blog.csdnimg.cn/img_convert/0c9b10d662f8ce121357838a49b7b0e2.png)

**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Linux运维知识点,真正体系化!**

**由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新**

**如果你觉得这些内容对你有帮助,可以添加VX:vip1024b (备注Linux运维获取)**
![img](https://img-blog.csdnimg.cn/img_convert/2ed415f417367091c307023bef208df1.jpeg)



### 最后的话

最近很多小伙伴找我要Linux学习资料,于是我翻箱倒柜,整理了一些优质资源,涵盖视频、电子书、PPT等共享给大家!

### 资料预览

给大家整理的视频资料:

![](https://img-blog.csdnimg.cn/img_convert/e5e6599437529daf692f6a686a95b7a9.png)

给大家整理的电子书资料:

  

![](https://img-blog.csdnimg.cn/img_convert/6b8267e393462cf9e9c98c3edd93370b.png)



**如果本文对你有帮助,欢迎点赞、收藏、转发给朋友,让我有持续创作的动力!**


**一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**
![img](https://img-blog.csdnimg.cn/img_convert/6a02274a200f7c49bc5a185533fe8b67.jpeg)

群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**
[外链图片转存中...(img-RF0Wlqp6-1712550590867)]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值