【pytorch目标检测】labelme下载(数据标注器)+手把手教你虚拟环境的配置

目标检测和分类问题最大的区别就是数据集的不同,以前一直使用pytorch自带的voc数据集,但事实上自己制作数据集不管是在比赛里面还是项目里面都至关重要。

所以我们需要自己标数据,这里给大家推荐2款标数据的软件!!!

一、labelme

这个软件是首推的,使用方便(虽然不是直接使用),通过命令行可以打开。

首先我们要先建立一个虚拟环境:(里面那个labelme就是。)

打开anaconda的Navigator ,一般在下载完之后都会有一个这个。

建立虚拟环境其实不是必须的,只是为了把将要下载的工具放到里面,更安全而已。

我们点击Create创建一个环境,然后我们在右侧搜索的地方输入lamelme并下载。

这样就把labelme放到虚拟环境里面了!!!

加载好了之后我们点击那个labelme环境就可以切换过去。

但是,这里你可能遇到点击Create没有反应的情况,请不要着急,我们还有B计划来创建虚拟环境!

打开pycharm:

 利用pycharm来更换编译的环境。

虚拟环境就是一个工具,大家不必太过于深入其中。。

实在不行。。我还有C方法来建立虚拟环境!!!那就是命令行了。(高效可行)

打开终端,输入:conda create -n labelme python=3.6

(后面那个是python版本,3以上都差不多,因为建立的时候还要下载他的解释器,所以不用担心写错了)

这时候他可能会报一个这样的错误:

 他的意思是你的镜像源出了问题,这里推荐使用conda自带的镜像源,很简单,把现在的镜像源删了就回到默认镜像源了:

重试之后就可以开始下载虚拟环境了!

下载完了我们要打开这个环境,方法就是    设置--》 解释器--》添加--》conda环境,也就是上面的B方法,也可以使用命令行打开:conda activate labelme

检查一下自己的环境,确认没问题了之后就可以安装咱的软件(脚本)了:

pip install labelme==3.16.2

 安装完了之后就可以使用了:

输入labelme

 你以为这就完了,咱还有一个软件:

 二、labellmg

这个是私人写的一个脚本,支持voc和yolo两种格式,他的下载方式更为简单,他就是一个文件,运行里面的labellmg.py就可以使用!

因为这里不是原创,就把连接发给大家,也可以加我qq或者csdn要。

qq:1757093754

(17条消息) 目标检测数据集标注工具_目标检测数据标注,目标检测数据集标注软件-深度学习代码类资源-CSDN文库

拿走不谢!!!

 

 

 

!!!制作不易,记得关注丫!!!

<think>好的,我现在需要帮用户找关于YoloX的详细程或入门指导。用户提到“YoloX 程 入门 手把手_guide”,所以首先得确定用户的需求。他们可能是一个刚开始接触YoloX的开发者,想学习如何安装、配置和使用YoloX,尤其是训练自己的数据集。用户提供的引用中有提到训练自己数据集的步骤,比如修改配置文件和处理数据路径错误,这可能意味着他们在尝试过程中遇到了问题,需要更详细的指导。 首先,我应该检查用户提供的引用内容。引用[1]是YoloX的GitHub官网,这是官方资源,肯定需要推荐给用户。引用[2]提到了训练自己数据集时遇到的错误,涉及文件路径问题,说明用户可能在数据准备阶段有困难。引用[3]是关于Blue Prism的程,可能和YoloX无关,但用户可能误加了,暂时忽略。 接下来,我需要整理YoloX入门的关键步骤。通常入门程包括环境安装、数据准备、模型训练、验证和推理。用户可能还需要了解如何调整参数和处理常见错误。根据引用[2],用户可能在数据集的XML文件路径上遇到问题,所以需要强调数据路径配置的重要性。 然后,我应该推荐官方文档作为首要资源,因为那里有最新的安装和使用说明。接着,寻找社区程,比如知乎或博客,这些地方通常有手把手的步骤。Kaggle和GitHub项目也可能提供代码示例和详细配置说明。 用户的问题可能还涉及如何处理特定的数据集格式,比如VOC或COCO,所以需要提到修改配置文件的部分,如替换数据集路径和类别名称。此外,常见错误如依赖项冲突、CUDA版本不匹配、数据标注错误等,都需要在程中涵盖解决方案。 最后,生成相关问题时要覆盖用户可能遇到的后续问题,比如性能优化、部署到移动端或处理自定义数据集的问题。这些问题能帮助用户深入学习和解决问题。</think>### YOLOX入门手把手程指南 YOLOX作为YOLO系列的高性能目标检测框架,其核心优势在于无锚框设计和解耦头结构。以下是分步骤的实践指南: #### 1. 环境安装与配置 - 推荐使用Python 3.8+和PyTorch 1.7+环境 ```bash git clone https://github.com/Megvii-BaseDetection/YOLOX.git cd YOLOX pip3 install -r requirements.txt pip3 install -v -e . # 安装可编辑模式 ``` 注意:若出现`pycocotools`安装失败,需先安装Cython和Visual Studio Build Tools[^1] #### 2. 数据集准备 - 使用VOC/COCO格式数据时,需修改`exps/example/yolox_voc/yolox_voc_s.py`中的路径配置: ```python self.data_dir = "your_dataset_path" self.train_ann = "train.json" self.val_ann = "val.json" ``` 特别注意:若报错`No such file or directory`,需检查XML文件路径是否包含中文或特殊字符[^2] #### 3. 模型训练 - 单GPU训练示例: ```bash python tools/train.py -f exps/example/yolox_voc/yolox_voc_s.py -d 1 -b 64 ``` 关键参数说明: - `-n`:指定模型名称(如yolox-s,yolox-m,yolox-l) - `--fp16`:启用混合精度训练 - `-o`:覆盖配置文件参数 #### 4. 验证与推理 - 图像检测示例: ```python from yolox.exp import get_exp exp = get_exp("exps/example/yolox_voc/yolox_voc_s.py") model = exp.get_model() detector = Predictor(model, exp) outputs = detector.inference(image) ``` #### 常见问题解决方案 1. **数据路径错误**:检查`data_dir`是否包含完整路径,避免相对路径歧义 2. **CUDA内存不足**:减小`-b`参数值或使用梯度累积 3. **标注文件错误**:使用`labelme2coco.py`工具转换标注格式
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

活成自己的样子啊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值