手把手教你使用YOLOV5训练自己的目标检测模型-以口罩检测为例-视频教程

手把手教你使用YOLOV5训练自己的目标检测模型

B站讲解视频:手把手教你使用YOLOV5训练自己的目标检测模型_哔哩哔哩_bilibili

CSDN博客:手把手教你使用YOLOV5训练自己的目标检测模型-口罩检测-视频教程_dejahu的博客-CSDN博客

代码地址:YOLOV5-mask-42: 基于YOLOV5的口罩检测系统-提供教学视频 (gitee.com)

处理好的数据集和训练好的模型:YOLOV5口罩检测数据集+代码+模型2000张标注好的数据+教学视频.zip-深度学习文档类资源-CSDN文库

更多相关的数据集:目标检测数据集清单-附赠YOLOV5模型训练和使用教程_dejahu的博客-CSDN博客

 先来看看我们要实现的效果,我们将会通过数据来训练一个口罩检测的模型,并用pyqt5进行封装,实现图片口罩检测、视频口罩检测和摄像头实时口罩检测的功能


下载代码

代码的下载地址是:[YOLOV5-mask-42: 基于YOLOV5的口罩检测系统-提供教学视频 (gitee.com)](https://github.com/ultralytics/yolov5)

配置环境

不熟悉pycharm的anaconda的小伙伴请先看这篇csdn博客,了解pycharm和anaconda的基本操作

如何在pycharm中配置anaconda的虚拟环境_dejahu的博客-CSDN博客_如何在pycharm中配置anaconda

anaconda安装完成之后请切换到国内的源来提高下载速度 ,命令如下:

conda config --remove-key channels
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.bfsu.edu.cn/anaconda/cloud/pytorch/
conda config --set show_channel_urls yes
pip config set global.index-url https://mirrors.ustc.edu.cn/pypi/web/simple

 首先创建python3.8的虚拟环境,请在命令行中执行下列操作:

conda create -n yolo5 python==3.8.5
conda activate yolo5

pytorch安装(gpu版本和cpu版本的安装)

实际测试情况是YOLOv5在CPU和GPU的情况下均可使用,不过在CPU的条件下训练那个速度会令人发指,所以有条件的小伙伴一定要安装GPU版本的Pytorch,没有条件的小伙伴最好是租服务器来使用。

GPU版本安装的具体步骤可以参考这篇文章:2021年Windows下安装GPU版本的Tensorflow和Pytorch_dejahu的博客-CSDN博客

需要注意以下几点:

  • 安装之前一定要先更新你的显卡驱动,去官网下载对应型号的驱动安装
  • 30系显卡只能使用cuda11的版本
  • 一定要创建虚拟环境,这样的话各个深度学习框架之间不发生冲突

我这里创建的是python3.8的环境,安装的Pytorch的版本是1.8.0,命令如下:

conda install pytorch==1.8.0 torchvision torchaudio cudatoolkit=10.2 # 注意这条命令指定Pytorch的版本和cuda的版本
conda install pytorch==1.10.0 torchvision torchaudio cudatoolkit=11.3 # 30系列以上显卡gpu版本pytorch安装指令
conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cpuonly # CPU的小伙伴直接执行这条命令即可

powershell如果无法执行,请执行

在powershell中执行 set-ExecutionPolicy RemoteSigned

安装完毕之后,我们来测试一下GPU是否

pycocotools的安装

大家可以使用下面这个指令来直接进行安装,不需要下载之后再来安装

pip install pycocotools-windows

其他包的安装

另外的话大家还需要安装程序其他所需的包,包括opencv,matplotlib这些包,不过这些包的安装比较简单,直接通过pip指令执行即可,我们cd到yolov5代码的目录下,直接执行下列指令即可完成包的安装。

pip install -r requirements.txt
pip install pyqt5
pip install labelme

测试一下

在yolov5目录下执行下列代码

python detect.py --source data/images/bus.jpg --weights pretrained/yolov5s.pt

执行完毕之后将会输出下列信息

在runs目录下可以找到检测之后的结果

按照官方给出的指令,这里的检测代码功能十分强大,是支持对多种图像和视频流进行检测的,具体的使用方法如下:

 python detect.py --source 0  # webcam
                            file.jpg  # image 
                            file.mp4  # video
                            path/  # directory
                            path/*.jpg  # glob
                            'https://youtu.be/NUsoVlDFqZg'  # YouTube video
                            'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream

数据处理

这里改成yolo的标注形式,之后专门出一期数据转换的内容。

数据标注这里推荐的软件是labelimg,通过pip指令即可安装

在你的虚拟环境下执行pip install labelimg -i https://mirror.baidu.com/pypi/simple命令进行安装,然后在命令行中直接执行labelimg软件即可启动数据标注软件。

软件启动后的界面如下:

数据标注

虽然是yolo的模型训练,但是这里我们还是选择进行voc格式的标注,一是方便在其他的代码中使用数据集,二是我提供了数据格式转化

标注的过程是:

1.打开图片目录

2.设置标注文件保存的目录并设置自动保存

3.开始标注,画框,标记目标的label,crtl+s保存,然后d切换到下一张继续标注,不断重复重复

labelimg的快捷键如下,学会快捷键可以帮助你提高数据标注的效率。

标注完成之后你会得到一系列的txt文件,这里的txt文件就是目标检测的标注文件,其中txt文件和图片文件的名称是一一对应的,如下图所示:

打开具体的标注文件,你将会看到下面的内容,txt文件中每一行表示一个目标,以空格进行区分,分别表示目标的类别id,归一化处理之后的中心点x坐标、y坐标、目标框的w和h。

4.修改数据集配置文件

标记完成的数据请按照下面的格式进行放置,方便程序进行索引。

YOLO_Mask
└─ score
       ├─ images
       │    ├─ test # 下面放测试集图片
       │    ├─ train # 下面放训练集图片
       │    └─ val # 下面放验证集图片
       └─ labels
              ├─ test # 下面放测试集标签
              ├─ train # 下面放训练集标签
              ├─ val # 下面放验证集标签

这里的配置文件是为了方便我们后期训练使用,我们需要在data目录下创建一个mask_data.yaml的文件,如下图所示:

到这里,数据集处理部分基本完结撒花了,下面的内容将会是模型训练!

模型训练

模型的基本训练

在models下建立一个mask_yolov5s.yaml的模型配置文件,内容如下:

模型训练之前,请确保代码目录下有以下文件

执行下列代码运行程序即可:

python train.py --data mask_data.yaml --cfg mask_yolov5s.yaml --weights pretrained/yolov5s.pt --epoch 100 --batch-size 4 --device cpu

训练代码成功执行之后会在命令行中输出下列信息,接下来就是安心等待模型训练结束即可

根据数据集的大小和设备的性能,经过漫长的等待之后模型就训练完了,输出如下

train/runs/exp3的目录下可以找到训练得到的模型和日志文件

当然还有一些骚操作,比如模型训练到一半可以从中断点继续训练,这些就交给大家下去自行探索喽。

模型评估

出了在博客一开头你就能看到的检测效果之外,还有一些学术上的评价指标用来表示我们模型的性能,其中目标检测最常用的评价指标是mAP,mAP是介于0到1之间的一个数字,这个数字越接近于1,就表示你的模型的性能更好。

一般我们会接触到两个指标,分别是召回率recall和精度precision,两个指标p和r都是简单地从一个角度来判断模型的好坏,均是介于0到1之间的数值,其中接近于1表示模型的性能越好,接近于0表示模型的性能越差,为了综合评价目标检测的性能,一般采用均值平均密度map来进一步评估模型的好坏。我们通过设定不同的置信度的阈值,可以得到在模型在不同的阈值下所计算出的p值和r值,一般情况下,p值和r值是负相关的,绘制出来可以得到如下图所示的曲线,其中曲线的面积我们称AP,目标检测模型中每种目标可计算出一个AP值,对所有的AP值求平均则可以得到模型的mAP值,以本文为例,我们可以计算佩戴安全帽和未佩戴安全帽的两个目标的AP值,我们对两组AP值求平均,可以得到整个模型的mAP值,该值越接近1表示模型的性能越好。

关于更加学术的定义大家可以在知乎或者csdn上自行查阅,以我们本次训练的模型为例,在模型结束之后你会找到三张图像,分别表示我们模型在验证集上的召回率、准确率和均值平均密度。

以PR-curve为例,你可以看到我们的模型在验证集上的均值平均密度为0.832。

如果你的目录下没有这样的曲线,可能是因为你的模型训练一半就停止了,没有执行验证的过程,你可以通过下面的命令来生成这些图片。

python val.py --data data/mask_data.yaml --weights runs/train/exp_yolov5s/weights/best.pt --img 640

最后,这里是一张详细的评价指标的解释清单,可以说是最原始的定义了

模型使用

模型的使用全部集成在了detect.py目录下,你按照下面的指令指你要检测的内容即可

 # 检测摄像头
 python detect.py  --weights runs/train/exp_yolov5s/weights/best.pt --source 0  # webcam
 # 检测图片文件
  python detect.py  --weights runs/train/exp_yolov5s/weights/best.pt --source file.jpg  # image 
 # 检测视频文件
   python detect.py --weights runs/train/exp_yolov5s/weights/best.pt --source file.mp4  # video
 # 检测一个目录下的文件
  python detect.py --weights runs/train/exp_yolov5s/weights/best.pt path/  # directory
 # 检测网络视频
  python detect.py --weights runs/train/exp_yolov5s/weights/best.pt 'https://youtu.be/NUsoVlDFqZg'  # YouTube video
 # 检测流媒体
  python detect.py --weights runs/train/exp_yolov5s/weights/best.pt 'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream                            

 比如以我们的口罩模型为例,如果我们执行python detect.py --weights runs/train/exp_yolov5s/weights/best.pt --source data/images/fishman.jpg的命令便可以得到这样的一张检测结果。

构建可视化界面

可视化界面的部分在window.py文件中,是通过pyqt5完成的界面设计,在启动界面前,你需要将模型替换成你训练好的模型,替换的位置在window.py的第60行,修改成你的模型地址即可,如果你有GPU的话,可以将device设置为0,表示使用第0行GPU,这样可以加快模型的识别速度嗷。

!!!使用GPU的话

替换之后直接右键run即可启动图形化界面了,快去自己测试一下看看效果吧

完成 

### 回答1: 首先,你需要安装好PyTorch和OpenCV。然后,你可以从GitHub上下载yolov5的代码。 接下来,你需要准备你的数据集。数据集应该包含你想要检测的物体的图像和标签。标签应该是一个XML文件,其中包含物体的类别和位置。 然后,你需要将数据集分成训练集和验证集。训练集用于训练模型,验证集用于评估模型的性能。 接下来,你需要创建一个配置文件,其中包含模型的参数和训练的超参数。你可以使用默认的配置文件,也可以根据你的需求进行修改。 然后,你可以开始训练模型。在训练过程中,你可以使用tensorboard来监视模型的性能。 最后,你可以使用训练好的模型来进行目标检测。你可以使用OpenCV来读取图像,并使用训练好的模型检测物体。 总之,使用yolov5训练自己的目标检测模型需要一些准备工作和技能,但是一旦你掌握了这些技能,你就可以创建自己的目标检测模型了。 ### 回答2: Yolov5是一种便捷快速的目标检测框架,它在精度和速度上比之前的版本有所提高。如果你想要使用Yolov5训练自己的目标检测模型,以下是一些步骤和技巧。 1. 准备数据集:首先,必须准备一个数据集,该数据集包含你想要检测的物体的图像。数据集可以从其他公开数据集直接下载或从自己收集的数据集中获取。无论是哪种方式,数据集都必须以YOLOv5可读的格式组织,即每个图像必须有一个它的标签文件,标签文件中包含有关每个物体位置和类别的信息。 2. 安装必要的依赖项:安装YOLOv5需要具有Python,其次我们要安装所需的Python的库依赖,例如Pytorch、NumPy、Pandas,等等。 可以通过使用conda或pip来安装这些依赖项; 3. Clone YOLOv5 Github repostory:要下载Yolov5,可以克隆YOLOv5 Github网址。从命令行中运行以下命令: git clone https://github.com/ultralytics/yolov5.git cd yolov5 4. 这个项目结构: * ┣ data/ * ┃ ┣ image/ * ┃ ┃ ┣ train/ * ┃ ┃ ┃ ┣ image_1.jpg * ┃ ┃ ┃ ┣ image_1.txt * ┃ ┃ ┃ ...... * ┃ ┃ ┣ valid/ * ┃ ┣ train.py * ┃ ┣ utils/ * ┃ ┣ models/ * ┃ ┣ weights/ * ┣ name.names * ┣ yolov5s.yaml 5. 准备NGC预训练数据:在训练模型前,需要下载预训练权重。YOLOv5的权重文件可以从NGC上下载,也可以从 https://github.com/ultralytics/yolov5/releases/ 上下载发布的权重文件。 6. 配置自己的类别:可以通过YOLOv5的配置文件修改,Yolov5使用YAML(Yet Another Markup Language)格式来配置其超参数,如类别数量,学习率,训练epoch等。 7. 训练模型:准备好以上步骤后,就可以开始训练模型了。可以使用 train.py 脚本进行训练。比如: python train.py --img 640 --batch 16 --epochs 10 --data ./data/yolo.yaml --cfg models/yolov5s.yaml --weights "" 8. 验证、测试模型:尽管loss值很低,并不意味着模型一定很好。因此,为了更好的评估模型的性能,建议你对测试集进行评估,可以使用 detect.py 脚本来进行评估。比如: python detect.py --source data/images/test/ --weights runs/train/exp/weights/best.pt 9. 将模型导出为TensorRT引擎:为了在移动设备或嵌入式设备上使用Yolov5模型,可以将其导出为TensorRT引擎。可以使用Yolov5提供的 export.py 脚本导出为TensorRT引擎。 python export.py --weights runs/train/exp7/weights/best.pt --img 640 --batch 1 总的来说,使用Yolov5训练自己的目标检测模型需要一些前置工作去写,然后通过配置参数,运行训练、验证和测试脚本。在每个步骤中,需要十分清楚自己要做什么,处理好每一个细节问题,才能顺利地完成自己的目标检测模型训练并有一定的精度。 ### 回答3: Yolov5是一种深度学习模型,能够进行目标检测,它对于广泛的物体检测任务具有出色的性能。本文将手把手地介绍如何使用Yolov5进行目标检测模型训练。 1. 下载和安装Yolov5 第一步是下载和安装Yolov5。我们可以在Github上得到最新的代码,并通过命令运行安装。安装完成后,建议按照提示安装必要的Python依赖项。 2. 准备数据集 第二步是准备好训练和测试数据集,可以使用现成的数据集,也可以从头开始创建自己的数据集。对于自制数据集,需要将图像和注释文件存储在相应目录中。注释文件描述了图像中所有目标的位置和类别。当完成这一步骤时,我们应该获得训练和测试集目录,每个目录应该包含图像文件和相应的注释文件。 3. 配置训练参数 第三步是为训练配置所需的超参数。这些参数包括网络结构,学习率,批量大小,迭代次数等等。可以通过修改配置文件来设置这些参数。我们需要基于网络结构来选择模型的版本。在配置文件中,我们需要设置图像的大小、目标分类的数量、训练和测试数据集的路径以及其他必要的参数。 4. 训练模型 当所有参数设置完成后,可以开始训练模型。通过在命令行中运行yolo.py脚本,可以启动训练过程。该脚本在训练期间使用指定的超参数和数据集对模型进行训练,并输出各个batch的训练状态信息。 5. 评估模型 训练模型后,需要对模型进行评估。评估过程包括计算模型的准确度、精度和召回率等指标。我们可以使用测试集对模型进行测试,并输出相关的指标信息。在测试期间,我们可以使用训练期超参数的某些变体或者优化超参数,以改进模型的精度。 6. 应用模型 最后一步是将模型应用于新的数据集。这可以通过在模型的输出上提取目标的位置和类别来完成,从而进行物体检测。在将模型应用于新数据集时,最好考虑训练和验证数据之间的数据分布差异,确保模型在新的数据集上的表现仍然良好。 总之,使用Yolov5进行目标检测模型训练需要准备好训练和测试数据集、配置模型的超参数以及选择网络结构和版本。训练和评估模型后,就可以将模型应用于新的数据集。需要注意的是,在整个过程中,超参数的选择和调整对模型的性能有着关键性的影响。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值