对于均匀线阵或者面阵,数字波束形成主要有基于导向矢量加权合成的方法和快速傅里叶变换方法(fft)两种,对于法线方向的目标,其最优权矢量是傅里叶变换系数。
一、从一维线阵理解数字波束形成原理
对于一维阵列,假设阵元间距为d,波长为,且阵元间距
。电磁波的入射方向与阵面法线夹角为
。则相邻阵元接收到的信号的波数相差:
公式 1
则相邻阵元接收到的信号的相位差如下:
公式 2
在做波束形成时,只要将各阵元的相位差补偿即可。
二、导向矢量加权方法
假设窄带信号为:
公式 3
其中为t时刻目标回波信号相对于发射信号的延迟引起的相位差。对于阵元数为N的一维均匀线阵,以阵元1为参考,阵列接收的信号为(假设阵列是理想的,阵元间不存在幅度、相位误差):
公式 4
由于窄带信号的幅度和相位都是随着时延缓慢变化的,忽略各个阵元之间由于波程差造成的包络差别,即认为,则阵列接收信号可表示为:
公式 5
假设各阵元接收到的信号导向矢量为:
公式 6
则波束形成的输出为:
公式 7
从上面表达式不难知道,当刚好能够补偿各阵元相位差时,波束形成的输出取到最大值,因此利用导向矢量加权方法对信号的DOA进行估计时,可以让导向矢量
。其中的
在
中进行遍历,当
模值最大时,此时对应的角度
为来波的角度,如此即可完成DOA的估计。
公式 8
三、傅里叶变换方法
关于傅里叶变换及其与导向矢量关系的详细推导可以参考导频矢量推导与离散信号傅里叶变换_导频矩阵二维傅里叶变换-CSDN博客
对于傅里叶级数,其复数形式为:
公式 9
傅里叶变换系数:
公式 10
傅里叶变换系数与数字波束形成形式一致。
若,则上式可表示为:
公式 11
四、两种方法的扫描空间的区别
需要特别指出的一点是,在对阵列信号进行空间普估计时,也即一定角度范围内对阵列信号的响应进行扫描时,导向矢量加权方法和fft方法的扫描步进是不同的。具体如下:
导向矢量加权方法
对于导向矢量加权方法,其空间扫描的角度分布可以任意指定,但一般情况下都会将扫描角度均匀分割。如要扫描度的角度范围(不包含90°),总共分为90个单元,则每个单元角度为1°。
傅里叶变换方法
对于fft方法,根据公式8,即为
对应的指向
的空间响应,即:
公式 12
由于傅里叶变换特性,P是内的整数,因此使用傅里叶变换时,空间扫描的角度分布为:
公式 13
可以看出并不是均匀分布的,这是傅里叶变换方法与导向矢量加权方法的区别。应当注意的是,在分析傅里叶变换方法获得到阵列空间响应时,其角度维坐标应当为
,而非
度的角度范围的均匀分割。
五、matlab仿真代码
matlab仿真代码链接: