- 卷积神经网络用于计算机视觉(人工智能的一个分支,即告诉计算机如何理解图像),如人脸识别,自动驾驶,美图秀秀
- 卷积神经网络还能处理音频,文本等,只要数据能变成图像格式它都能够处理。
- 是一种深度学习模型或类似于人工神经网络的多层感知器,常用来分析视觉图像。
- 产生原因:传统神经网络对于输入的数据X(X视为矩阵)维数太高,如果是一张32x32的灰度图片,一个神经元的权重w就需要32x32,假设需要20个神经元,则权重W(W视为矩阵)的参数个数就是32x32x20=20480个,显示图片的维度不可能是32,可能是上千,那么W的个数就很容易到上亿,这显然太大了!所以我们需要一种可以显著降低计算量的机制,因此CNN诞生
- 通俗来讲卷积神经网络就相当于一个黑箱,有输入和输出,输入的就是图片,输出的就是图片是什么
- 由四部分组成
- 输入层,卷积层,池化层,全连接层
- 神经网络(neural networks)的基本组成包括输入层、隐藏层、输出层。而卷积神经网络的特点在于隐藏层分为卷积层和池化层(pooling layer)以及激活层。 每一层的作用:
- 卷积层:通过在原始图像上平移来提取特征
- 激活层:增加非线性分割能力
- 池化层:压缩数据和参数的量,减小过拟合,降低网络的复杂度,(最大池化和平均池化)
- 为了能够达到分类效果,还会有一个全连接层(FC)也就是最后的输出层,计算损失进行分类(或回归)。