卷积神经网络

卷积神经网络(CNN)是深度学习的重要组成部分,常用于计算机视觉任务如人脸识别和自动驾驶。CNN通过卷积层、激活层、池化层和全连接层提取并分析图像特征。其特点在于能显著降低计算量,有效处理高维数据。在训练过程中,通过反向传播优化卷积核和权重,以实现图像识别和分类。
摘要由CSDN通过智能技术生成
  • 卷积神经网络用于计算机视觉(人工智能的一个分支,即告诉计算机如何理解图像),如人脸识别,自动驾驶,美图秀秀
  • 卷积神经网络还能处理音频,文本等,只要数据能变成图像格式它都能够处理
  • 是一种深度学习模型或类似于人工神经网络的多层感知器,常用来分析视觉图像。
  • 产生原因:传统神经网络对于输入的数据X(X视为矩阵)维数太高,如果是一张32x32的灰度图片,一个神经元的权重w就需要32x32,假设需要20个神经元,则权重W(W视为矩阵)的参数个数就是32x32x20=20480个,显示图片的维度不可能是32,可能是上千,那么W的个数就很容易到上亿,这显然太大了!所以我们需要一种可以显著降低计算量的机制,因此CNN诞生
  • 通俗来讲卷积神经网络就相当于一个黑箱,有输入和输出,输入的就是图片,输出的就是图片是什么

  • 由四部分组成
    • 输入层,卷积层,池化层,全连接层
  • 神经网络(neural networks)的基本组成包括输入层、隐藏层、输出层。而卷积神经网络的特点在于隐藏层分为卷积层和池化层(pooling layer)以及激活层。       每一层的作用:
    • 卷积层:通过在原始图像上平移来提取特征
    • 激活层:增加非线性分割能力
    • 池化层:压缩数据和参数的量,减小过拟合,降低网络的复杂度,(最大池化和平均池化)
    • 为了能够达到分类效果,还会有一个全连接层(FC)也就是最后的输出层,计算损失进行分类(或回归)。
    <
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值