3.阶乘被连乘整除类型题

1. 设 a , b , n 为 正 整 数 , 证 明 : n ! ∣ b n − 1 ∏ i = 0 n − 1 ( a + i b ) 1.设a,b,n为正整数,证明:n!|b^{n-1}\prod\limits_{i=0}^{n-1}(a+ib) 1.a,b,nn!bn1i=0n1(a+ib)






刚开始看到这题我还没什么思路,知道提示说讨论素因子我就明白了。
证:若 v p ( n ! ) = α ( p 为 素 数 ) v_p(n!)=\alpha(p为素数) vp(n!)=α(p)
①当 p ∣ b p|b pb 时, α = ∑ i = 1 ∞ [ n p i ] < ∑ i = 1 ∞ n p i = n p − 1 ≤ n \large\alpha=\sum\limits_{i=1}^{\infty}[\frac{n}{p^i}]<\sum\limits_{i=1}^{\infty}\frac{n}{p^i}=\frac{n}{p-1}\le n α=i=1[pin]<i=1pin=p1nn,即 α ≤ n − 1    ∴ p α ∣ b n − 1 \alpha\le n-1 \ \ \therefore p^\alpha|b^{n-1} αn1  pαbn1

②当 p ∤ b p\nmid b pb 时,则 ∃ c   s . t . b c ≡ 1 ( m o d p α ) \exists c\ s.t.bc\equiv1\pmod{p^\alpha} c s.t.bc1(modpα)
∏ i = 0 n − 1 ( a + i b ) ≡ ∏ i = 0 n − 1 ( a c + i ) ( m o d p α ) \prod\limits_{i=0}^{n-1}(a+ib)\equiv\prod\limits_{i=0}^{n-1}(ac+i)\pmod{p^\alpha} i=0n1(a+ib)i=0n1(ac+i)(modpα)
p α ∣ n ! ∣ ∏ i = 0 n − 1 ( a c + i ) p^\alpha|n!|\prod\limits_{i=0}^{n-1}(ac+i) pαn!i=0n1(ac+i)

( ∏ i = 0 n − 1 ( a c + i ) , b n − 1 ) = 1 (\prod\limits_{i=0}^{n-1}(ac+i),b^{n-1})=1 (i=0n1(ac+i),bn1)=1。所以成立。



2. 对 于 正 整 数 n , m ( m > 1 ) , 证 明 : n ! ∣ ∏ i = 0 n − 1 ( m n − m i ) 2.对于正整数n,m(m>1),证明:n!|\prod\limits_{i=0}^{n-1}(m^n-m^i) 2.n,m(m>1)n!i=0n1(mnmi)






有了上题的经验这题就很简单了。
证:
n = 1 n=1 n=1时,显然成立,这里不过多赘述。以下 n ≥ 2 n\ge2 n2
∏ i = 0 n − 1 ( m n − m i ) = m n ( n − 1 ) 2 ∏ i = 1 n ( m i − 1 ) \prod\limits_{i=0}^{n-1}(m^n-m^i)=m^{\frac{n(n-1)}{2}}\prod\limits_{i=1}^n(m^i-1) i=0n1(mnmi)=m2n(n1)i=1n(mi1)
v p ( n ! ) = α ( p 为 素 数 ) v_p(n!)=\alpha(p为素数) vp(n!)=α(p)
①当 p ∣ m p|m pm 时,由于 n ≥ 2 n\ge2 n2,所以 n ( n − 1 ) 2 ≥ n − 1 ≥ v p ( n ! ) \frac{n(n-1)}{2}\ge n-1\ge v_p(n!) 2n(n1)n1vp(n!)(上面证过了,这里不再证了), p α ∣ m n ( n − 1 ) 2 p^\alpha|m^{\frac{n(n-1)}{2}} pαm2n(n1)

②当 p ∤ b p\nmid b pb 时,
{ m i − 1 } \{m^i-1\} {mi1}中整除 p k p^k pk 的个数 s ( k ) = [ n o r d ( p k ) m ] ≥ [ n ( p − 1 ) ∗ p k ] \large s(k)=[\frac{n}{ord_{(p^k)}{m}}]\ge[\frac{n}{(p-1)*p^k}] s(k)=[ord(pk)mn][(p1)pkn]
v p ( ∏ i = 0 n − 1 ( m n − m i ) ) = ∑ i = 1 ∞ s ( k ) ≥ ∑ i = 1 ∞ [ n p i ] = α \large v_p(\prod\limits_{i=0}^{n-1}(m^n-m^i))=\sum\limits_{i=1}^{\infty} s(k)\ge\sum\limits_{i=1}^{\infty}[\frac{n}{p^i}]=\alpha vp(i=0n1(mnmi))=i=1s(k)i=1[pin]=α p α ∣ ∏ i = 0 n − 1 ( m n − m i ) p^\alpha|\prod\limits_{i=0}^{n-1}(m^n-m^i) pαi=0n1(mnmi)
( m n ( n − 1 ) 2 , ∏ i = 1 n ( m i − 1 ) ) = 1 (m^{\frac{n(n-1)}{2}},\prod\limits_{i=1}^n(m^i-1))=1 (m2n(n1),i=1n(mi1))=1。所以成立。

这种题型我只见过这两题,但是这样的思路还是值得借鉴的。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值