尝试过很多方法,最后还是发现直接下载pytorch代码包然后再cd到包的位置进行安装成功率最高,记录一下,免得忘记!
第一步:查看显卡驱动版本
在终端输入nvidia-smi,查看cuda版本
如图,我这里的cuda版本是11.0
第二步:从清华源下载代码包
点进链接之后根据自己的系统再点进去一层,笔者这里的系统是linux64,如下图:
点进去之后按下ctrl+f键,就可以触发当前页面搜索工具,如下图右上角,接着输入自己需要的代码包就可以了,记得要选择带有cu11.0的包,因为我们要安装的是cuda版本的,cu代表cuda,11.0对应cuda版本,如下图:
下载好之后将安装包拖入自己想放的文件夹里面
cd 到包所在位置,然后执行安装命令:
conda install --offline pytorch-1.7.0-py3.8_cuda11.0.221_cudnn8.0.3_0.tar.bz2
conda install --offline torchvision-0.8.0-py38_cu110.tar.bz2
offline后面是包的名称,大家复制的时候记得替换为自己的代码包名称 ,因为不需要联网下载,安装过程特别快,注意记得检查自己环境的python版本是否和安装包的对应,以及自己安装包之间的版本依赖也记得对应一下。
第三步:检查pytorch是否安装成功
在终端输入python,回车然后进入python编辑器,输入import torch然后回车,再输入torch.cuda.is_available(),,然后回车,如果返回True,说明Gpu版本的torch安装成功,如果是False,倒霉蛋继续找其他教程吧,深切地同情每一个被配置环境折磨得python_er
最后推荐几个比较全面讲解pytorch安装的链接: