约束优化问题的最优性条件

目录

基本概念:

等式约束最优化的最优性条件:

例题解析:

不等式约束最优化的最优性条件:

Fritz-John 条件:

K-T 条件:

例题解析


基本概念:

约束优化问题的一般模型:

\left\{\begin{matrix} minf(x) (x\in R^{n})\\ s.t. g_{i}(x)\geq 0,i=1,2,...,m \\ h_{j}(x)=0,j=1,2,...,l \end{matrix}\right.

其中,f ,g_{i}h_{j} 均是实值连续函数,且具有二阶连续偏导数。


等式约束最优化的最优性条件:

一般形式:

\left\{\begin{matrix} minf(x)\\ s.t. h_{j}(x)\geq 0,j=1,2,...,l\end{matrix}\right.

其中 fR^{n}\rightarrow R , h_{j}:R^{n}\rightarrow R

下面给出定理:
定理1:在等式约束优化问题中,设 f 在点 \bar{x} 处可微,h_{j} 在 \bar{x} 处具有一阶连续偏导数,并且向量组 \bigtriangledown h_{1}(\bar{x}),\bigtriangledown h_{2}(\bar{x}),...,\bigtriangledown h_{l}(\bar{x}) 线性无关,如果 \bar{x} 是局部极小点,则存在实数 \bar{v}_{j}j=1,2,...,l,使得 \bigtriangledown f(\bar{x})-\sum_{j=1}^{l}\bar{v}_{j}\bigtriangledown h_{j}(\bar{x})=0

定理2:设 fR^{n}\rightarrow R 和 h_{j}:R^{n}\rightarrow R(j=1,2,...,l) 在 \bar{x} 处具有二阶连续偏导数,如果存在 \bar{v}\in R^{l},使得 \bigtriangledown L(\bar{x},\bar{v})=0,并且 \forall z\neq 0,只要 z^{T}\bigtriangledown h_{j}(\bar{x})=0,j=1,2,...,l,就有 z^{T}\bigtriangledown _{xx}^{2}L(\bar{x},\bar{v})z> 0,则 \bar{x} 是上述问题的严格局部极小值。


例题解析:


不等式约束最优化的最优性条件:

一般形式:

\left\{\begin{matrix} minf(x)\\ s.t. g_{i}(x)\geq 0,i=1,2,...,m \end{matrix}\right.

其中 fR^{n}\rightarrow R , g_{i}:R^{n}\rightarrow R

将不等式约束分为两种情况:

(1)g_i(\bar{x})=0,称为第 i 个不等式约束在 \bar{x} 处起作用的约束(紧约束);

(2)g_i(\bar{x})> 0,称为第 i 个不等式约束在 \bar{x} 处不起作用的约束(松约束);

用 I(\bar{x}) 表示在可行点处起作用的指标集,即 I(\bar{x})=\left \{ i|g_i(x)=0,i=1,2,...,m \right \}

参考下面例题,可以了解 I(\bar{x}) 的作用。

对于起作用的约束,当点沿着某个方向稍微离开 \bar{x} 时,仍能满足这些约束(松约束);而沿另一个方向离开 \bar{x} 时,不论步长多么小,都会违背这些约束(紧约束)。


Fritz-John 条件:

  • u_{0}\bigtriangledown f(\bar{x})-\sum_{i\in I(x)}u_{i}\bigtriangledown g_{i}(\bar{x})=0
  • \left\{\begin{matrix} u_{0}\bigtriangledown f(\bar{x})-\sum_{i=1}^{m}u_{i}\bigtriangledown g_{i}(\bar{x})=0\\ u_{i}\bigtriangledown g_{i}(\bar{x})=0 \end{matrix}\right.

满足 Fritz-John 条件的点成为 Fritz-John 点。


K-T 条件:

与Fritz-John 条件相比,如果 u_{0}\neq 0,u_{i}\geq 0 ,且 g_{i} 线性无关,则可得到  K-T 点。

同时需满足松紧条件:

\left\{\begin{matrix} g_{i}(\bar{x})=0,u_{i}> 0\\ g_{i}(\bar{x})> 0,u_{i}=0 \end{matrix}\right.


例题解析:

下面我来用两个例题来探究常见的如何判断 K-T 点和求 K-T 点:

例题1:求以下 K-T 点

\left\{\begin{matrix} minf(x)=-2x_{1}-x_{2}\\ s.t. g_{1}=8-2x_{1}+x_2\geq 0\\g_2=14-x_1-2x_2\geq0\\g_3=4+x_1-x_2\geq0\\g_4=x_1\geq0\\g_5=x_2\geq0 \end{matrix}\right.

解:

\bigtriangledown f=(-2,-1)^{T}

\bigtriangledown g_1=(-2,1)^{T}

\bigtriangledown g_2=(-1,-2)^{T}

\bigtriangledown g_3=(1,-1)^{T}

\bigtriangledown g_4=(1,0)^{T}

\bigtriangledown g_5=(0,1)^{T}

画出约束条件所规划的可行域,同时在顶点处画出对应约束条件的向量,与 \bigtriangledown f=(-2,-1)^{T} 进行比较,由在起作用的约束条件所形成的可行凸锥内,若  \bigtriangledown f 在可行凸锥内,则可视作 K-T 点,可以看出,C 为 K-T 点。

例题2:求以下 K-T 点

\left\{\begin{matrix} minf(x)=(x_{1}-1)^{2}+x_{2}\\ s.t. g_{1}=2-x_{1}-x_2\geq 0\\g_2=x_2\geq0 \end{matrix}\right.

解:

构造拉格朗日函数:L=f(x)-u_{1}g_{1}-u_2g_{2}

\left\{\begin{matrix} L_{x_{1}}=0\\ L_{x_{2}}=0 \\ u_1g_1=0 \\ u_2g_2=0 \\ u_1,u_2\geq 0 \end{matrix}\right.\Rightarrow \left\{\begin{matrix} 2x_{1}-2+u_1=0\\ 1+u_1-u_2=0 \\ u_1(2-x_1-x_2)=0 \\ u_2x_2=0\\ u_1,u_2\geq 0 \end{matrix}\right.

下面对 u_1,u_2 进行判断,再结合松紧定理,推断出 K-T点:

u_1u_2x_1x_2
00无解
0+10
+0无解
++无解

所有,K-T 点为:(1,0)

(行文中若有纰漏,希望大家指正)

  • 7
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

背对人潮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值