yolov5初始运行时的错误1

在运行Yolov5的5.0版本时遇到训练数据集加载错误,原因是COCO128数据集位置不正确。正确的放置方式应为将其放在项目目录的平行目录中,而非项目目录内。修正此问题后,模型训练得以顺利进行。对于未遇到此问题的用户,可能是因为数据集路径设置已正确或默认配置匹配了数据集位置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在github中下载完yolov5的5.0版本之后,初次运行显示报错:Exception: train: Error loading data from ../coco128/images/train2017/: train: ..\coco128\images\train2017 does not exist

       

经过查询,是coco128数据集的位置有问题,我的coco数据集放在了项目目录下,但是实际应该放在项目目录的平行目录中,即:

这样就能成功运行了。

 

ps:有的人是不会出现我这个错误的,具体什么原因我也不知道,如果有的话,可以参考一下我这个。

### YOLOv5 训练过程中的常见错误及解决方案 #### 环境配置问题 环境配置问题是新手常遇到的一类问题。确保安装了正确的依赖库版本非常重要,任何不匹配都可能导致程序无法正常运行。如果在创建虚拟环境中遇到了 `libiomp5md.dll` 文件冲突的问题,可以尝试移除该文件来解决问题[^4]。 #### CUDA 和 cuDNN 配置不当 CUDA 或者 cuDNN 版本与 PyTorch 不兼容可能会引发多种异常情况。确认所使用的 GPU 加速库版本能够支持当前的硬件设备,并且同 PyTorch 安装包相适配是必要的预防措施之一[^1]。 #### 数据集路径设置有误 当数据集路径设定不对,训练脚本可能找不到所需的数据文件,从而抛出 FileNotFoundError 类型的异常。仔细检查并修正配置文件内的路径参数可避免此类状况的发生。 #### 学习率过高或过低 不合适的学习率会使得模型难以收敛甚至发散。观察损失函数的变化趋势,适调整初始学习率或是采用动态调整机制有助于提高训练效果[^2]。 #### 权重初始化不合理 预训练权重加载失败或者是自定义层权重初始化方式选择不当都会影响最终的结果质量。对于迁移学习任务来说,正确导入官方提供的预训练模型权重尤为关键;而对于全新设计的网络,则需谨慎挑选合适的随机数生成器种子值来进行参数初始化操作。 ```python import torch.nn as nn def init_weights(m): if isinstance(m, (nn.Conv2d, nn.Linear)): nn.init.xavier_uniform_(m.weight) if m.bias is not None: nn.init.constant_(m.bias, 0) model.apply(init_weights) ``` #### 损失值为 NaN 这通常是因为梯度爆炸引起的。可以通过降低批量大小(batch size),减小小批次内样本间的差异程度,或者启用梯度裁剪功能(gradients clipping)等方式加以缓解。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值