时装类别识别(神经网络实现fashion数据分类)

一、问题描述

时装类别识别
时装类别识别问题是预测一张图片中的时装类别。
数据集:fashionMnist
训练集:60000张时装图片,每张图片是28*28的灰度矩阵,有一个{0,1,…,9}的类标签,表示时装的类别。测试数据:10000张测试数据。
要求:
导入fashionMnist数据。
设计神经网络算法,完成时装类别的预测问题。
上机报告中应写出遇到问题和解决方法。
注意:fashionMnist数据集的导入,会遇到一些问题,自主尝试解决。
在这里插入图片描述

时装类别识别问题是预测一张图片中的时装类别。
数据集:fashionMnist
训练集:60000张时装图片,每张图片是28*28的灰度矩阵,有一个{0,1,…,9}的类标签,表示时装的类别。测试数据:10000张测试数据。

二、实验目的

设计神经网络算法,完成时装类别的预测问题。

三、实验内容

3.1数据导入

import tensorflow as tf
from tensorflow import keras

import numpy as np
import matplotlib.pyplot as plt

class_names=['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
               'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']

3.2数据预处理

在训练网络之前,必须对数据进行预处理。如果检查训练集中的第个六图像,会看到像素值处于 0 到 255 之间。
在这里插入图片描述

plt.figure()
plt.imshow(train_images[5])
plt.colorbar()
plt.grid(False)
plt.show()

将这些值缩小至 0 到 1 之间,然后将其馈送到神经网络模型。为此,请将这些值除以 255。接下里以相同的方式对训练集和测试集进行预处理,并且展示出来。
在这里插入图片描述

train_images = train_images / 255.0
test_images = test_images / 255.0
plt.figure(figsize=(10,10))
# 画出25个图片,展示
for i in range(25):
    plt.subplot(5,5,i+1)
    plt.xticks([])
    plt.yticks([])
    plt.grid(False)
    plt.imshow(train_images[i], cmap=plt.cm.binary)
    plt.xlabel(class_names[train_labels[i]])
plt.show()

3.3算法描述

神经网络分类算法是模型假设是一个含有n个输入 和k个输出的网络结构, k元交叉熵为目标函数的经验损失最小化算法。
神经网络的基本组成部分是层。层会从向其馈送的数据中提取表示形式。大多数深度学习都包括将简单的层链接在一起。大多数层(如 tf.keras.layers.Dense)都具有在训练期间才会学习的参数。
该网络的第一层 tf.keras.layers.Flatten 将图像格式从二维数组(28 x 28 像素)转换成一维数组(28 x 28 = 784 像素)。将该层视为图像中未堆叠的像素行并将其排列起来。该层没有要学习的参数,它只会重新格式化数据。
展平像素后,网络会包括两个 tf.keras.layers.Dense 层的序列。它们是密集连接或全连接神经层。第一个 Dense 层有 128 个节点(或神经元)。第二个(也是最后一个)层会返回一个长度为 10 的数组。每个节点都包含一个得分,用来表示当前图像属于 10 个类中的哪一类。

model = keras.Sequential([
    keras.layers.Flatten(input_shape=(28, 28)), #输入图像的像素
    keras.layers.Dense(128, activation='relu'),# 计算参数 activation 激励函数 relu过滤>0
    keras.layers.Dense(10) #数据集服装10分类 softmax选出最大
])

# 神经网络初始是采用的都是随机参数
# 通过损失函数评价训练模型 通过优化函数优化模型参数
# metrics 用于监控训练和测试步骤
model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])
# 训练
model.fit(train_images, train_labels, epochs=10)
test_loss, test_acc = model.evaluate(test_images,  test_labels, verbose=2)

3.4主要代码(完整代码)

#首先我们需哟引入我们需要的工具模块
import tensorflow as tf
from tensorflow import keras
# 引入数据分析工具和画图工具
import numpy as np
import matplotlib.pyplot as plt

from main import predictions
# 画图函数
def plot_image(i, predictions_array, true_label, img):
 predictions_array, true_label, img = predictions_array, true_label[i], img[i]
 plt.grid(False)
 plt.xticks([])
 plt.yticks([])
 plt.imshow(img, cmap=plt.cm.binary)
 predicted_label = np.argmax(predictions_array)
 # 预测对了,显示蓝色;错了显示红色
 if predicted_label == true_label:
  color = 'blue'
 else:
  color = 'red'

 plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label],
                                      100 * np.max(predictions_array),
                                      class_names[true_label]),
            color=color)

# 画图函数
def plot_value_array(i, predictions_array, true_label):
 predictions_array, true_label = predictions_array, true_label[i]
 plt.grid(False)
 plt.xticks(range(10))
 plt.yticks([])
 thisplot = plt.bar(range(10), predictions_array, color="#777777")
 plt.ylim([0, 1])
 predicted_label = np.argmax(predictions_array)

 thisplot[predicted_label].set_color('red')
 thisplot[true_label].set_color('blue')

# 导入数据
fashion_mnist = keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()
class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
               'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
plt.figure()
plt.imshow(train_images[5])
plt.colorbar()
plt.grid(False)
plt.show()

train_images = train_images / 255.0
test_images = test_images / 255.0
plt.figure(figsize=(10,10))
# 画出25个图片,展示
for i in range(25):
    plt.subplot(5,5,i+1)
    plt.xticks([])
    plt.yticks([])
    plt.grid(False)
    plt.imshow(train_images[i], cmap=plt.cm.binary)
    plt.xlabel(class_names[train_labels[i]])
plt.show()
# 序贯模型(Sequential):单输入单输出,一条路通到底,层与层之间只有相邻关系,没有跨层连接。这种模型编译速度快,操作也比较简单
model = keras.Sequential([
    keras.layers.Flatten(input_shape=(28, 28)), #输入图像的像素
    keras.layers.Dense(128, activation='relu'),# 计算参数 activation 激励函数 relu过滤>0
    keras.layers.Dense(10) #数据集服装10分类 softmax选出最大
])
# 神经网络初始是采用的都是随机参数
# 通过损失函数评价训练模型 通过优化函数优化模型参数
# metrics 用于监控训练和测试步骤
model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])
# 训练
model.fit(train_images, train_labels, epochs=10)
test_loss, test_acc = model.evaluate(test_images,  test_labels, verbose=2)

print('\nTest accuracy:', test_acc)
num_rows = 5
num_cols = 3
num_images = num_rows*num_cols
plt.figure(figsize=(2*2*num_cols, 2*num_rows))

# 展示运算的结果
for i in range(num_images):
  plt.subplot(num_rows, 2*num_cols, 2*i+1)
  plot_image(i, predictions[i], test_labels, test_images)
  plt.subplot(num_rows, 2*num_cols, 2*i+2)
  plot_value_array(i, predictions[i], test_labels)
plt.tight_layout()
plt.show()

四、实验结果及分析

在这里插入图片描述
在这里插入图片描述

蓝色表示预测正确,红色表示预测错误。最终训练出的模型达到88%。

五、遇到的问题和解决方法

1.导入图片
一开始导入代码如下:

train_image = "D:\pythonProject\MachineLearning\homework\homework6\data\train-labels-idx1-ubyte\train-labels.idx1-ubyte"
test_image = "D:\pythonProject\MachineLearning\homework\homework6\data\train-labels-idx1-ubyte"
train_label = "D:/PyCharm/Project/machine_learning/machine_learning/homework/week13/train-labels-idx1-ubyte"
test_label = "D:\pythonProject\MachineLearning\homework\homework6\data\train-labels-idx1-ubyte"

一直出现错误。
后来采用在线下载导入。
导入数据

fashion_mnist = keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()

资料获取

在这里插入图片描述
1.关注微信公众号:汪程序员,回复26121600,即可获取
在这里插入图片描述

2.https://download.csdn.net/download/m0_61504367/85620097

以下是一个简单的MLP神经网络在MATLAB中识别时装图像的代码示例: 1. 准备数据 首先,我们需要准备训练和测试数据数据集可以从网上下载,例如Fashion-MNIST。 2. 处理数据 我们需要将图像数据转换为特征向量,并将标签转换为独热编码。这可以通过Matlab中的一些函数来实现。 3. 构建MLP神经网络 我们可以使用Matlab中的神经网络工具箱来构建MLP神经网络。网络结构可以根据需求进行调整。 4. 训练模型 在训练模型之前,我们需要将数据集分为训练集和测试集。然后我们可以使用Matlab中的train函数来训练模型。 5. 测试模型 使用Matlab中的test函数来测试模型,并计算分类准确率。 下面是一个参考代码示例: ``` % 准备数据 data = load('fashion-mnist.mat'); x_train = data.x_train; % 训练集数据 y_train = data.y_train; % 训练集标签 x_test = data.x_test; % 测试集数据 y_test = data.y_test; % 测试集标签 % 处理数据 x_train = reshape(x_train, [], size(x_train, 4))'; y_train = full(ind2vec(y_train' + 1)); x_test = reshape(x_test, [], size(x_test, 4))'; y_test = full(ind2vec(y_test' + 1)); % 构建神经网络 net = patternnet([100 50]); % 训练模型 net.trainParam.epochs = 100; net.trainParam.showWindow = false; net = train(net, x_train', y_train'); % 测试模型 outputs = net(x_test'); [~, predicted] = max(outputs); [~, actual] = max(y_test); accuracy = sum(predicted == actual) / numel(actual); disp(['Classification accuracy: ' num2str(accuracy)]); ``` 这是一个简单的示例,你可以根据自己的需求和数据集进行调整。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

汪程序猿

就当请我吃顿饭

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值