SIFT算法及原理

SIFT算法 - 知乎

SIFT算法:

定义:

SIFT,即scale invariant feature transform,译为尺度不变特征转换,是图像处理领域中的一种局部特征描述算法。

SIFT算法包括了尺度不变性,在旋转图像、改变图像亮度、移动拍摄位置时,都可以得到较好的检测效果。

特点:

①较好的稳定性和不变性,可适应适当的旋转变化、尺度缩放、明暗变化,在一定程度上不受视角变化、仿射变换和噪音干扰

②区分性好,可快速精准的区分信息进行匹配

③多属性,针对单个物体也产生大量特征向量

④高速性,匹配速度快

⑤可扩展性,可与其他形式的特征向量进行联合

SIFT算法实质:

在不同的尺度空间上查找关键点,并计算出关键点的方向

特征匹配流程: 

①提取关键点:搜索所有尺度空间上的图像位置,通过高斯微分函数识别潜在的具有尺度和旋转不变的兴趣点。

关键点:一些不会因光照、尺度、旋转等变化而消失的点,比如角点、边缘点、暗区域的亮点、亮区域的暗点。

②定位关键点并确定特征方向:在每个候选位置上,通过一个拟合精细的模型来确定位置和尺度,关键点的选择依据于它们的稳定程度;基于图像局部的梯度方向,分配给每个关键点位置一个或多个方向;所有后面对图像数据的操作都相对于关键点的方向、尺度和位置进行变换,从而提供对于这些变换的不变性。

③通过各关键点的特征向量,进行两两比较找出相互匹配的若干对特征点,建立景物之间对应关系

SIFT算法原理:

图像金字塔:

定义:

图像金字塔是一种以多分辨率来解释图像的结构,通过对原始图像进行多尺度像素采样的方式,生成N个不同分辨率的图像;把具有最高级别分辨率的图像放在底部,以金字塔形状排列,金字塔自底向上图像的像素尺寸逐渐降低,到金字塔顶部只包含一个像素点的图像

获取步骤:

①利用低通滤波器平滑图像

②对平滑图像进行抽样

采样方式主要包含上采样和下采样

上采样:增加特征图的分辨率,以捕获更多细节信息

下采样:减小特征图的迟钝,降低网络的计算量和参数量

图像高斯金字塔:

定义:

一种图像的尺度空间,尺度的概念用来模拟观察者距离物体的远近程度,在模拟物体远近的同时需要考虑物体的粗细粒度

图像尺度空间:模拟人眼看到物体的远近程度以及模糊程度

考虑因素:

图像的远近程度:采样法

图像的模糊程度:采用高斯核对图像进行平滑处理,高斯卷积核是实现尺度变换的唯一线性核

构建过程:

高斯金字塔由很多金字塔构成,每组金字塔都包含若干层

①先将原图扩大一倍后做高斯金字塔第1组的第1层,将第1组的第1层图像经高斯卷积(高斯平滑或高斯滤波)后作为第1组金字塔的第2层,高斯卷积函数如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值