opencv经典算子原理总结+SIFT算法原理+特征匹配用于图像拼接

33 篇文章 34 订阅 ¥199.90 ¥299.90
52 篇文章 17 订阅

此文总结一下opencv中的一些常见算子,如SIFT、Canny、及霍夫变换等原理,可用于深度理解特征提取数学原理

1.SIFT(尺度不变性特征转换)

SIFT算法的实质是在不同的尺度空间上查找关键点(特征点),并计算出关键点的方向。SIFT所查找到的关键点是一些十分突出,不会因光照,仿射变换和噪音等因素而变化的点,如角点、边缘点、暗区的亮点及亮区的暗点等。
在这里插入图片描述
具体详见:
SIFT特征点提取:https://blog.csdn.net/lingyunxianhe/article/details/79063547

1.1高斯金字塔(尺度空间)

在这里插入图片描述
高斯金字塔源码:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

明月醉窗台

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值