李宏毅2017机器学习课程视频笔记1:Introduction

1. 什么是机器学习?

通过编程得到有学习能力的程序:a program for learning not just the accumulation of knowledge

2. 怎么做机器学习?

ML的目标:得到一个function,实现从所给输入得到理想输出。当处理困难问题的时候,这个function往往是很复杂的,包含很多参数,人往往不能解释这些参数的含义。这也是深度学习可解释性差的原因

ML的步骤:
机器学习的三个步骤
step1 选择一个模型。一个模型所对应的是一个函数集合。比如对于线性模型, y = w x + b y=wx+b y=wx+b ,一组 w w w b b b的取值所对应的就是一个function,所有的 ( w , b ) (w,b) (w,b)合起来就构成了这个问题选择的Linear Model
step2 定义损失函数评价function的好坏。Loss function也是一个函数,input是Model中的一个函数,output是一个scalar的函数,scalar的大小决定了function的好坏。损失函数的计算是需要traininig data参与的
step3 从Model中选择最好的函数f*。the best function对应的是模型中损失函数值最小的函数。

3. 机器学习的学习图谱

Learning Map of Machine Learning
从ML使用的Training Data所包含的信息来分:ML可分为Supervised Learning、Semi-supervised Learning、Transfer Learning、Unsupervied Learning、Reinforcement Learning
- Supervied Learning 的training data每一个都有(input, output)即每一个样本都有label
- Semi-Supervised Learning部分training data 有input/output
pair,但更多的大部分training data是没有label的
- Transfer Learning的部分training data是与问题领域无关的
Semi-Supervised Learning 和Transfer Learning都是为了解决training data标签不足的问题
- Unsupervised Learning 使用无label的training data进行学习
- Reinforcement Learning 将training data的label换为了针对output的评价值,function使用这个评价值来优化function

从ML需要解决的问题来分:ML可分为Regression、Classification、Structured Learning三类。三类task的具体区别体现在输出上,Regression的output是一个scalar作为预测值;Classification的output是一个class类别作为预测值;Structured Learning的output是一个有结构的输出。这三类当中最复杂然而也是应用最广泛的是Structured Learning。

从ML解决问题所采用的模型来分:Model可分为Linear Model、Non-linear Model。Linear Model所能模拟的问题是非常有限的,因此Non-linear Model特别是DL是当前ML的主流研究方向

ps:在针对不同training data的task中都是能够按照task类型和采用model进行进一步细分的。

4. AI训练师需要做什么?

  • 选择合适的Model
  • 定义合适的Loss Function
  • 帮助得到the best function
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值