走迷宫-BFS

给定一个 n×m�×� 的二维整数数组,用来表示一个迷宫,数组中只包含 00 或 11,其中 00 表示可以走的路,11 表示不可通过的墙壁。

最初,有一个人位于左上角 (1,1)(1,1) 处,已知该人每次可以向上、下、左、右任意一个方向移动一个位置。

请问,该人从左上角移动至右下角 (n,m)(�,�) 处,至少需要移动多少次。

数据保证 (1,1)(1,1) 处和 (n,m)(�,�) 处的数字为 00,且一定至少存在一条通路。

输入格式

第一行包含两个整数 n� 和 m�。

接下来 n� 行,每行包含 m� 个整数(00 或 11),表示完整的二维数组迷宫。

输出格式

输出一个整数,表示从左上角移动至右下角的最少移动次数。

数据范围

1≤n,m≤1001≤�,�≤100

输入样例:
5 5
0 1 0 0 0
0 1 0 1 0
0 0 0 0 0
0 1 1 1 0
0 0 0 1 0
输出样例:
8
//数组模拟队列
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 110; 
typedef pair<int, int> PII;
int n, m;
int g[N][N];//存放地图
int d[N][N];//存 每一个点到起点的距离
PII q[N * N];//手写队列
int bfs()
{
    int hh = 0, tt = 0;
    q[0] = {0, 0};

    memset(d, - 1, sizeof d);//距离初始化为- 1表示没有走过

    d[0][0] = 0;//表示起点走过了

    int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};//x 方向的向量和 y 方向的向量组成的上、右、下、左

    while(hh <= tt)//队列不空
    {
        PII t = q[hh ++ ];//取队头元素

        for(int i = 0; i < 4; i ++ )//枚举4个方向
        {
            int x = t.first + dx[i], y = t.second + dy[i];//x表示沿着此方向走会走到哪个点
            if(x >= 0 && x < n && y >= 0 && y < m && g[x][y] == 0 && d[x][y] == -1)//在边界内 并且是空地可以走 且之前没有走过
            {
                d[x][y] = d[t.first][t.second] + 1;//到起点的距离
                q[ ++ tt ] = {x, y};//新坐标入队
            }
        }
    }
    return d[n - 1][m - 1]; //输出右下角点距起点的距离即可
}
int main() 
{
    cin >> n >> m;
    for(int i = 0; i < n; i ++ )
        for(int j = 0; j < m; j ++ )
            cin >> g[i][j];

    cout << bfs() << endl;

    return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值