CUDA Context学习及实验
CUDA上下文(CUDA Context)是一个核心概念,负责在GPU设备上管理和维护CUDA程序执行所需的所有状态和资源。
一、CUDA上下文的原理
1. 什么是CUDA上下文
- 定义:CUDA上下文是CUDA程序在GPU设备上的执行环境或工作空间,类似于CPU编程中的进程或线程上下文。
- 包含内容:设备内存分配、内核(kernel)代码、流(stream)、事件(event)等所有GPU执行所需的状态信息和资源。
2. 上下文的创建与绑定
- 创建:当主机线程首次与GPU设备交互(如调用CUDA API函数)时,CUDA驱动程序会为该线程创建一个CUDA上下文。
- 绑定:创建的CUDA上下文绑定到调用线程,一个线程只能有一个当前的CUDA上下文,对GPU的所有操作都在该上下文中执行。
3. 上下文的作用范围
- 线程独立性:CUDA上下文的作用范围仅限于创建它的主机线程,不同线程有各自的CUDA上下文,彼此独立。
- 资源隔离:GPU资源和状态在上下文之间隔离,避免并发访问时的资源冲突和数据竞争。
二、CUDA上下文的功能
1. 管理GPU资源
- 内存管理:负责设备内存的分配和释放,包括全局内存、共享内存、常量内存等。
- 内核加载与执行:管理CUDA内核代码的加载和执行,编译PTX代码,管理内核参数。
- 流和事件:包含用于并发执行和同步的流(streams)和事件(events)。
2. 维护执行状态
- 配置状态:包括当前活动的设备、线程块配置、访存配置等。
- 错误状态:维护CUDA API调用的错误状态,供开发者调试和处理异常。
3. 资源和状态的隔离
- 独立性:每个上下文有自己独立的资源,不会与其他上下文冲突。
- 安全性:防止多个线程同时访问同一资源导致的不确定行为。
4. 支持并行和异步执行
- 流(Streams):允许在同一设备上并发地执行多个内核或内存传输操作,提高设备利用率。
- 事件(Events):用于标记和测量GPU执行的特定点,帮助实现主机和设备之间的同步。
三、CUDA上下文的工作机制
1. 上下文的创建与销毁
- 自动创建:主机线程首次调用CUDA API与设备交互时,CUDA驱动自动创建上下文。
- 手动管理:高级用户可以使用CUDA的上下文管理API手动创建、绑定和销毁上下文,获得更细粒度的控制。
- 销毁:上下文不再需要时,可以显式销毁以释放GPU资源;否则,当主机线程结束时,CUDA驱动会自动清理。
2. 上下文的切换
- 单线程多上下文:一个主机线程可以创建多个CUDA上下文,但同一时刻只能有一个当前上下文。
- 切换代价:上下文切换需要保存和恢复大量状态,有一定的性能开销,应尽量避免频繁切换。
3. 多线程与多上下文
- 多线程环境:每个线程都有自己的CUDA上下文,彼此独立。
- 共享上下文:可以通过线程同步和上下文共享机制,让多个线程访问同一个上下文,但需要谨慎管理以避免资源冲突。
四、CUDA上下文的内存可见性与隔离
同一进程内的不同上下文
- 设备内存的可见性:在同一进程中,不同的CUDA上下文分配的设备内存物理上位于同一GPU的全局内存中,可以相互拷贝数据。
- 数据拷贝:可使用
cudaMemcpy
、cudaMemcpyAsync
、cudaMemcpyPeer
等CUDA API,在不同上下文的设备内存之间执行数据拷贝。
不同进程之间的设备内存隔离
- 默认隔离:不同进程中的CUDA上下文及其设备内存默认是隔离的,彼此不可见,不能直接访问或拷贝数据。
- MMU与进程关联:GPU的内存管理单元在进程级别上管理设备内存的虚拟地址空间,确保进程间的内存隔离。
进程间通信的特殊机制
- CUDA进程间通信(IPC)
- 共享内存句柄:一个进程可以通过
cudaIpcGetMemHandle
获取设备内存的句柄,然后通过进程间通信方式(如socket、管道、共享内存等)将句柄传递给另一个进程。 - 打开句柄访问内存:接收方进程使用
cudaIpcOpenMemHandle
打开内存句柄,从而访问同一块设备内存。 - 限制条件&#
- 共享内存句柄:一个进程可以通过