【AIGC】Stable diffusion的lora微调

根据上一章节已经部署成功Stable diffusion webui。这章适用lora微调。

参考:

如何用自己的图片训练Stable Diffusion的LoRa | Learn Prompt: Your CookBook to Communicating with AI

下载GitHub 上lora脚本

参考:

GitHub - Akegarasu/lora-scripts: SD-Trainer. LoRA & Dreambooth training scripts & GUI use kohya-ss's trainer, for diffusion model.

  1. 安装依赖 我们去到下载好的lora-scripts路径下,右键install-cn,使用powershell运行

然后安装完成后,笔者这里powershell的窗口会自己消失,如果有报错,窗口会显示错误信息,笔者这步没有遇到报错。

训练数据:

启动Stable diffusion web ui应用,参考前面的章节,选择训练->图像预处理, 我们事先在一个文件夹中放了训练的图片,目标目录把某个空文件夹的路径粘贴上去。勾选自动面部焦点裁剪和使用Deepbooru生成标签,点击预处理。

完成后,我们的目标文件夹以及标签如下图所示

关闭WebUI应用!!!

然后在lora-scripts目录下新建一个文件夹,笔者这里取名为train_graph

进入刚新建的这个文件夹,再新建一个文件夹

再进入刚新建的文件夹,再新建一个文件夹,这个文件夹取名为 [数字]_[名字] 笔者这里为6_dilireba

把我们之前预处理好的图片数据都放入到这个文件夹中

然后我们在lora-scripts路径下,使用文本编辑器(记事本、VScode、notepade++等)打开train.ps1这个文件

内容如下所示

这里我们注意的这两处地方,第一个为底模型的路径,也就是Stable Diffusion大模型的路径。 这里笔者在

https://huggingface.co/runwayml/stable-diffusion-v1-5/tree/main

上下载了v1-5-pruned.ckpt作为实验,并把它改名为model.ckpt放在lora-script/sd-models路径下,也就是第一个红框对应的路径。

然后把第二个红框的数据路径修改为我们前面创建的/train_graph/dilireba这个路径

找到 output_name这个地方,模型名字自己命名

保存修改!保存修改!保存修改!

训练

回到lora-scripts路径下,右键train.ps,使用powershell运行

这里笔者遇到一个报错如下图所示

我们再次使用文本编辑器打开lora-scripts路径下的train.ps,如果没有出现同款报错,可忽略这步

找到optimizer_type,它默认为AdamW8bit,笔者修改成AdamW如下图所示,保存修改!保存修改!保存修改!

然后回到lora-scripts,右键train.ps,使用powershell运行,即可正常训练如下图所示。

完成训练

训练完成后,lora-scripts/output路径下可以看到我们训练好的lora模型。

然后我们就可以使用自己训练好的lora模型了,具体使用方法参考前面Stable Diffusion模型介绍章节里的Lora部分

使用lora前后对比。笔者这里只使用了6张图片来训练,也没有调参之类的,所以效果有限,但风格的变化对比起来还是比较明显的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值