机器学习实验
机器学习实验源码
今天也很想睡觉哦
conding!
展开
-
创建虚拟数据集,使得数据集不能线性可分,分别使用Hard Voting和Soft Voting来进行分类, 要求总结两者之间的区别。
创建虚拟数据集,使得数据集不能线性可分,分别使用Hard Voting和Soft Voting来进行分类, 要求总结两者之间的区别。原创 2024-01-16 14:13:52 · 419 阅读 · 0 评论 -
下载或者导入拓展波士顿房价预测数据集,分别利用Bagging和Boosting实现房价预测回归模型,并对效果进行对比。
下载或者导入拓展波士顿房价预测数据集,分别利用Bagging和Boosting实现房价预测回归模型,并对效果进行对比。原创 2024-01-15 15:13:24 · 480 阅读 · 0 评论 -
下载或者导入波士顿房价预测数据集,利用SVM实现房价预测回归模型,要求对采用不同的核函数效果进行对比。
下载或者导入波士顿房价预测数据集,利用SVM实现房价预测回归模型,要求对采用不同的核函数效果进行对比。原创 2024-01-14 19:47:07 · 666 阅读 · 0 评论 -
创建虚拟数据集,使得数据集不能线性可分。分别利用使用多项式特征和SVM核函数(包括多项式核函数和高斯核函数)进行分类,并总结出针对线性不可分问题,基于多项式特征和基于核函数方法的不同。
创建虚拟数据集,使得数据集不能线性可分。分别利用使用多项式特征和SVM核函数(包括多项式核函数和高斯核函数)进行分类,并总结出针对线性不可分问题,基于多项式特征和基于核函数方法的不同。原创 2024-01-14 19:45:31 · 376 阅读 · 0 评论 -
下载鸢尾花数据集,分别使用Hard Margin SVM和Soft Margin SVM来进行分类, 要求总结出参数C在SVM中的作用并能够绘制出决策边界。
下载鸢尾花数据集,分别使用Hard Margin SVM和Soft Margin SVM来进行分类, 要求总结出参数C在SVM中的作用并能够绘制出决策边界。原创 2024-01-14 19:43:52 · 367 阅读 · 0 评论 -
下载或者导入鸢尾花数据集,任选两个类别并使用logistics回归正则化实现分类模型,比较不同正则化结果并绘制出该模型的分类结果,并保存模型。
下载或者导入鸢尾花数据集,任选两个类别并使用logistics回归正则化实现分类模型,比较不同正则化结果并绘制出该模型的分类结果,并保存模型。原创 2024-01-14 19:41:17 · 381 阅读 · 0 评论 -
下载或者导入wave数据集,分别L1和L2使用线性回归正则化生成wave回归模型,比较不同正则化结果并绘制出该模型的预测结果,并保存模型。
下载或者导入wave数据集,分别L1和L2使用线性回归正则化生成wave回归模型,比较不同正则化结果并绘制出该模型的预测结果,并保存模型。原创 2024-01-14 19:39:28 · 398 阅读 · 0 评论 -
下载或者导入波士顿房价预测数据集,使用决策树实现回归模型,验证决策树的超参数对模型的影响。
下载或者导入波士顿房价预测数据集,使用决策树实现回归模型,验证决策树的超参数对模型的影响。原创 2024-01-14 19:36:43 · 741 阅读 · 0 评论 -
下载或者导入鸢尾花数据集,使用决策树实现分类模型,对决策树进行可视化
下载或者导入鸢尾花数据集,使用决策树实现分类模型,对决策树进行可视化原创 2024-01-14 19:30:19 · 444 阅读 · 0 评论 -
下载或者导入鸢尾花数据集,任选两个类别并使用logistics回归实现分类模型,并绘制出该模型的分类结果,并保存模型。
下载或者导入鸢尾花数据集,任选两个类别并使用logistics回归实现分类模型,并绘制出该模型的分类结果,并保存模型。原创 2024-01-14 19:25:18 · 398 阅读 · 0 评论 -
下载或者导入wave数据集,分别使用线性回归中的正规方程和梯度下降法生成wave回归模型,分析两种求解方法结果,绘制出该模型的预测结果,并保存模型。
下载或者导入wave数据集,分别使用线性回归中的正规方程和梯度下降法生成wave回归模型,分析两种求解方法结果,绘制出该模型的预测结果,并保存模型。原创 2024-01-14 19:22:37 · 419 阅读 · 0 评论 -
下载或者导入wave数据集,使用K近邻方法生成wave回归模型,并绘制出该模型的预测结果。
下载或者导入wave数据集,使用K近邻方法生成wave回归模型,并绘制出该模型的预测结果。原创 2024-01-14 19:17:00 · 407 阅读 · 0 评论 -
下载或者导入鸢尾花数据集,使用K近邻方法实现鸢尾花分类模型,并绘制出该模型的分类结果。
下载或者导入鸢尾花数据集,使用K近邻方法实现鸢尾花分类模型,并绘制出该模型的分类结果。原创 2024-01-14 19:14:00 · 457 阅读 · 0 评论