【大语言模型LLM】-Ollama+Llama3 部署你自己的大语言模型

本文介绍了Ollama,一个支持大模型管理和使用的开源工具,包括模型训练、部署、监控,以及与多种框架的兼容性。文章详细讲解了电脑配置要求、Ollama的功能特性,如API接口、GPU/CPU混合模式和Docker部署,并展示了如何通过Python调用Ollama部署和使用大语言模型如Llama3。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

🔥博客主页西瓜WiFi

🎥系列专栏《大语言模型》

很多非常有趣的模型,值得收藏,满足大家的收集癖! 如果觉得有用,请三连👍⭐❤️,谢谢!

长期不定时更新,欢迎watch和fork!❤️❤️❤️

❤️感谢大家点赞👍 收藏⭐ 评论⭐


🎥大语言模型LLM基础-系列文章

【大语言模型LLM】- AI工具收录集合,一篇就够了!
【大语言模型LLM】-大语言模型如何编写Prompt?
【大语言模型LLM】-如何使用大语言模型提高工作效率?
【大语言模型LLM】-使用大语言模型搭建点餐机器人
【大语言模型LLM】-基础语言模型和指令微调的语言模型
【大语言模型LLM】-基于ChatGPT搭建客服助手(1)

持续更新中…

一、电脑配置要求

  • 推荐16GB内存以上,最低8GB。
  • 最近几年的CPU均可。
  • 有英伟达显卡性能表现会更好,但不是必须。

二、Ollama 介绍

在这里插入图片描述
Ollama是一个开源的大模型管理工具,它支持模型的训练、部署和监控等功能。通过使用Ollama,用户可以轻松地管理本地的大模型,从而提高模型的训练速度和部署效率。此外,Ollama还支持多种机器学习框架,如TensorFlow和PyTorch等,使用户可以根据自己的需求选择合适的框架进行模型的训练。

Ollama不仅是一个大型语言模型服务,提供了类似OpenAI的API接口和聊天界面,还支持热加载模型文件,使得部署最新版本的GPT模型并通过接口使用变得非常方便。它是基于Go语言开发的,可以帮助用户在本地快速运行大模型,通过简单的安装指令,可以用一条命令就在本地运行大模型。

Ollama的功能还包括启动并运行大型语言模型,如Llama 2、Code Llama和其他模型,以及自定义并创建用户自己的模型。它支持GPU/CPU混合模式,允许用户根据自己笔记本电脑的GPU和GPU显存来选择运行模式。

此外,Ollama被设计用于在Docker容器中部署LLM(大型语言模型),其主要功能是在Docker容器内部署和管理LLM,使该过程变得非常简单。它还提供了与微软AI合作的最先进的大型语言模型合集,这些模型在复杂的聊天、多语言、推理和代理用例上提高了性能。

Ollama是一个功能强大的工具,适用于需要在本地部署和管理大型语言模型的用户。它支持多种机器学习框架,提供API接口和聊天界面,支持GPU/CPU混合模式,并且可以通过Docker容器简化部署过程。

三、部署流程

  • 下载安装 Ollama
  • 下载 Llama3 大模型
ollama run llama3

在这里插入图片描述

第一次运行要下载大模型,下载的快慢取决于你的网速。

  • 使用 Python ,API调用
import requests


def get_lamma_response(prompt):
    # 定义请求的 URL
    url = 'http://localhost:11434/api/chat'
    # 定义请求的数据
    data = {
        "model": "llama3",
        "messages": [
            {
                "role": 'user',
                "content": prompt
            }
        ],
        "stream": False
    }
    # 发送 POST 请求
    response = requests.post(url, json=data)
    # 获取响应内容
    response_data = response.json()

    return response_data['message']['content']


prompt='''
why is the sky blue?
'''
response = ollama_model(prompt)

print(response)
The sky appears blue to us because of a combination of factors involving light, atmosphere, and our own perception. Here's a breakdown:

1. **Sunlight**: When sunlight enters Earth's atmosphere, it contains all the colors of the visible spectrum (red, orange, yellow, green, blue, indigo, and violet). The shorter wavelengths of light, like blue and violet, are more easily scattered by the tiny molecules of gases like nitrogen (N2) and oxygen (O2).
2. **Atmospheric scattering**: As sunlight interacts with these gas molecules, it scatters in all directions. This scattering effect is more pronounced for shorter wavelengths (like blue and violet) than longer wavelengths (like red and orange). Think of it like a game of pool: the smaller balls (shorter wavelengths) are more likely to bounce around and change direction than the larger balls (longer wavelengths).
3. **Rayleigh scattering**: In 1871, Lord Rayleigh discovered that the amount of scattering depends on the wavelength of light and the size of the particles involved. This phenomenon is now known as Rayleigh scattering. It's responsible for the blue color we see in the sky during the daytime.
4. **Perception**: Our brains are wired to perceive the blue light that reaches our eyes as a dominant feature of the sky. The scattered blue light from all directions appears to come from above, creating the illusion of a blue sky.
5. **Earth's atmosphere**: The color of the sky can also be influenced by various atmospheric conditions, such as:
	* Dust and pollutants: These particles can scatter light in different ways, making the sky appear more hazy or gray.
	* Water vapor: High levels of water vapor can make the sky appear more white or cloudy.
	* Aerosols: Tiny particles in the air, like those from volcanic eruptions or human activities, can scatter light and change the apparent color of the sky.

In summary, the combination of sunlight, atmospheric scattering (especially Rayleigh scattering), and our perception of the scattered blue light creates the blue color we see in the sky. The Earth's atmosphere can also influence this appearance through various factors.

Llama3的发布对AI行业产生了深远影响。目前已经出现中文版本微调模型了,不过目前这个项目还不算完善,距离完成还有很长的路要走。虽然微调模型是在预训练的基础上做的微调,但事实上预训练和微调是两个不同的概念。预训练只是为了让模型更好的掌握基础知识,而微调则是为了让模型在不同任务中表现得更好。尽管目前国内也有一些针对Llama3的微调模型,但还不够完善,而且并不能做到通用。
目前国内对Llama3微调模型的支持主要还是通过开源社区获取,这是因为Llama3开源社区目前处于起步阶段,很多细节都还没有完善,不过我相信在不久的将来会有更多针对Llama3的微调模型出现。

<think>好的,我现在要回答用户关于OllamaLLM的关系以及如何使用它们的问题。首先,我需要理解用户的需求,他们可能想了解Ollama如何帮助管理和运行本地的大语言模型,以及具体的集成方法。用户提到了教程和集成方案,所以需要涵盖安装步骤、基本使用、以及与其他工具的整合。 首先,根据提供的引用,引用[4]提到Ollama支持多种LLM,如Llama3、DeepSeek-R1等,并且方便切换和管理模型,这说明Ollama是一个管理工具。引用[1]提到Ollama的更新使其能够使用OpenAI的API,这可能与集成Autogen有关。引用[3]和[2]则涉及与LobeChat和Next.js的集成,需要介绍这些方案。 接下来,我需要整理Ollama的基本功能,安装步骤。引用[5]提到了创建运行目录,可能涉及安装后的配置。然后,基本使用包括模型下载、运行、API调用,比如通过curl发送请求。这部分需要确保命令正确,符合用户的操作习惯。 关于集成方案,Autogen的整合需要说明如何设置Ollama作为本地服务,并修改Autogen的配置指向本地API端点。引用[1]中的信息需要在这里应用。Next.js的UI整合引用[2],需要提到项目地址和使用方法。LobeChat的集成引用[3],需要指导用户如何设置Ollama的访问地址。 此外,需要注意用户可能遇到的常见问题,比如非本地访问Ollama的方法,引用[3]提到可能需要配置服务端地址。性能优化部分,可以建议使用量化模型,如引用[4]中的轻量化设计,以及硬件加速方法。 最后,生成相关问题时要围绕用户可能的后续疑问,如性能优化、模型管理、应用场景等,确保覆盖用户潜在的需求。 需要检查所有引用是否正确应用,确保每个步骤都有对应的引用支持,避免错误信息。同时,按照用户的要求,使用中文回答,结构清晰,分步骤说明,代码块正确使用格式,数学表达式使用$符号。</think>### OllamaLLM的关系及使用教程 Ollama 是一个专为本地大语言模型LLM)管理设计的工具,提供模型下载、版本切换、轻量化部署等功能[^4]。它通过命令行和API接口简化了开源LLM的本地化使用流程,支持与多种开发框架(如Autogen、Next.js、LobeChat)集成。 --- #### 一、Ollama核心功能 1. **模型管理** - 支持Llama3、DeepSeek-R1、Alpaca等主流开源模型[^4] - 通过`ollama pull <模型名>`下载模型,例如: ```bash ollama pull llama3:8b # 下载Llama3-8B量化版 ``` 2. **本地推理服务** 运行模型后,Ollama会启动本地API服务(默认端口`11434`),可通过HTTP请求调用: ```bash curl http://localhost:11434/api/generate -d &#39;{ "model": "llama3", "prompt": "你好,介绍一下Ollama" }&#39; ``` --- #### 二、Ollama安装步骤 1. **Linux/macOS安装** ```bash curl -fsSL https://ollama.com/install.sh | sh ollama serve # 启动服务 ``` 2. **Windows安装** 下载安装包后执行: ```powershell winget install ollama ollama serve ``` 3. **Docker部署**(引用[5]) ```bash mkdir ollama-demo && cd ollama-demo docker run -d -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama ``` --- #### 三、OllamaLLM集成方案 1. **Autogen本地LLM支持**(引用[1]) 修改Autogen配置指向Ollama API: ```python from autogen import oai oai.config_list = [{ "model": "llama3", "api_base": "http://localhost:11434/v1", "api_key": "ollama" # 任意非空值 }] ``` 2. **Next.js Web UI集成**(引用[2]) 使用[nextjs-ollama-llm-ui](https://gitcode.com/gh_mirrors/ne/nextjs-ollama-llm-ui)项目: ```bash git clone https://gitcode.com/gh_mirrors/ne/nextjs-ollama-llm-ui cd nextjs-ollama-llm-ui npm install && npm run dev ``` 3. **LobeChat对话界面**(引用[3]) 在设置中添加Ollama服务地址: ``` 设置 → 语言模型Ollama → 服务地址: http://localhost:11434 ``` --- #### 四、性能优化建议 1. 使用量化模型(如`llama3:8b-q4_K_M`)降低显存占用 2. 启用GPU加速: ```bash CMAKE_ARGS="-DLLAMA_CUBLAS=on" FORCE_CMAKE=1 pip install llama-cpp-python ``` 3. 调整上下文长度参数`--num_ctx 4096`提升长文本处理能力 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

西瓜WiFi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值