sliding window attention

sliding window attention是为了解决在输出序列长度sequence length很大的时候attention计算量爆炸增长的问题。

用一句话来总结sliding window attention其实就是:每一个token只和包含其本身在内的前W个token做Attention。最简单的实现其实就是给不需要计算attention的其它token都加上一个mask就可以了,是不是非常简单?

用图片更直观一些,如下(图片来源:图解Mixtral 8 * 7b推理优化原理与源码实现):

核心代码如下:

def scaled_dot_product_attention(q, k, v, window_size, mask=None):
    matmul_qk = torch.matmul(q, k.transpose(-1, -2))
    dk = torch.tensor(k.shape[-1], dtype=torch.float32)
    scaled_attention_logits = matmul_qk / torch.sqrt(dk)
    if mask is not None:
        scaled_attention_logits += mask * -
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小麦要吃麦当劳

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值