论文略读:Window Attention is Bugged: How not to Interpolate Position Embeddings

iclr 2024 reviewer 打分 6666

  • 窗口注意力、位置嵌入以及高分辨率微调是现代Transformer X CV 时代的核心概念。
  • 论文发现,将这些几乎无处不在的组件简单地结合在一起,可能会对性能产生不利影响
  • 问题很简单:在使用窗口注意力时对位置嵌入进行插值是错误的
    • 相对位置嵌入直接添加到注意力矩阵——>不仅速度慢,而且无法从最近的创新中受益
    • 理想情况下,希望只使用简单快速的绝对位置嵌入,就像最初的ViT一样
  • 论文研究了两种具有这三个组件的最先进方法,即Hiera和ViTDet,发现两者确实都存在这个问题
    • Hiera是一个现代层次化视觉变换器,只使用绝对位置嵌入。
      • Hiera比其他最先进的视觉架构更强大、更高效,而且完全由简单的ViT块组成。
      • 但是,Hiera的插值效果不佳
      • 当在比训练时稍大的图像上微调Hiera时,所得模型的准确性急剧下降
      • 罪魁祸首是窗口注意力和绝对位置嵌入之间的相互作用
        • 即,在同一模型中同时使用窗口注意力和绝对位置嵌入时,在插值到更大的图像时会引入一个错误

  • 为了解决这个问题,论文引入了一种简单的绝对窗口位置嵌入策略,这在Hiera中彻底解决了这个问题,并允许在ViTDet中提高模型的速度和性能
    • 可以插值到任何图像大小而不会出现问题
  • 最终,论文将两者结合起来,得到了HieraDet,其在COCO上达到了61.7的box mAP
    • 这一切都源于本质上是一个3行代码的错误修复,我们将其命名为“absolute win”

  • ※论文并不声称引入了任何极其新颖的技术。相反,它识别并分析了当前最先进状态中存在的一个错误,引入了一个简单的策略来修复它,并建立了插值位置嵌入的最佳实践

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值