自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(57)
  • 收藏
  • 关注

原创 【css学习笔记9】品优购项目

(尽量不要超过30个汉字)例如:京东(d.com)-综合网购首选正品低价,品质保障,配送及时,轻松购物!小米商城-小米5s,红米note4,小米mix,小米笔记本官方网站2)dlescription网站说明简要说明我们网站主要是做什么的。我们提,description作为网站的总体业务和主题概括,多采用"我们是。." 我们提供。. "'xxx网作为。.","电话:010..."之类语句。(专门的seo人员写)3)keywords关键字越重要放在越前面。

2025-09-13 21:30:00 1055

原创 【css学习笔记8】html5css3新特性

音频标签和视频标签使用方式基本致浏览器支持情况不同谷歌浏览器把音频和视频自动播放禁止了我们可以给视频标签添加muted属性来静音播放视频,音频不可以(可以通过avascript解决)视频标签是重点,我们常设置自动播放,不使用controls控件,循环和设置大小属性。

2025-09-13 17:30:00 839

原创 【css学习笔记7】css高级技巧

鼠标经过某个盒子的时候,提高当前盒子的层级即可(如果没有有定位,则加相对定位(保留位置),如。主要是针对背景图片的使用 多个小背景图片放到一张大图片sprites(精灵图后雪碧图)中。给图片的盒子加上外边框之后底部会默认有一个空隙 因为图片和文字默认是基线对齐。/*限制在一个块元素显示的文本的行数 超过第二行虎仔第二行末尾有省略号*有效减少服务器接收和发送请求的次数 提高页面的加载速度。移动的距离就是目标图片的xy坐标,向上向左是负值。设置或检索伸缩盒对象的子元素的排列方式*

2025-09-13 17:00:00 648

原创 【css学习笔记6】定位布局

<title>显示隐藏元素之display</title><style>.peppa {*/.george {</style>佩奇</div><div class="george">乔治

2025-09-13 16:00:00 1078

原创 【css学习笔记5】学成在线案例

1)布局定位属性:display/position/float/clear/visbility/overflow2)自身属性:witdeh/height/margin/padding/background3)文本属性:color/font/text-decoration/text-align/vertical-align/white-space/break-word。

2025-09-13 14:00:00 438

原创 【css学习笔记4】-css拓展

通常情况下我们不确定父元素会装多少内容 比如新闻内容的多少 商品上新等等 不方便给一个确定的高度 ,但是不设置高度的情况下盒子浮动又。用于创建浮动框,将其移动到一边(设定的属性值)直到另一边边缘触及包含块或另一个浮动框的边缘。脱离标准流的控制(浮)移动到指定位置(动),浮动的盒子不会保留原来的位置。是清除浮动元素的影响,浮动清除之后 父级会根据浮动的子盒子自动检测高度。给粉色的盒子加上浮动之后,第一行的位置不占用 会被第二行的盒子占掉。浮动的盒子只会影响盒子后面的标准流不会影响前面的标准流。

2025-09-13 12:30:00 820

原创 【CSS学习笔记3】css特性

行高的继承:不加单位指的是当前文字大小的倍数。

2025-09-13 12:00:00 837

原创 【CSS学习笔记2】-css复合选择器

特点是图占一行、高度宽度边距都可以控制、宽度默认是容器的100%、是一个容器及盒子 可以放行内元素或者块级元素。相邻元素 在一行 一行可以显示多个、高宽设置无效、默认u暗渡是他本身的宽度、行内元素只能容纳文本或其他行内元素。精确单位 第一个是x坐标、第二个是y坐标(距离左边、顶部的距离,另:如果只指定一个值则是x值 y值默认居中。可以选择多组标签,定义为相同的样式,用于集体声明,任何选择器都可以作为并集选择器的一部分。(例如经过链接的时候颜色变化。background: 颜色、地址、平铺、图像滚动、位置。

2025-09-12 21:42:46 993

原创 【CSS学习笔记1】css基础知识介绍

</head>中用<style></style>包含<head><style>/* 选择器 {样式}*//*给谁改样式{改成什么样的} *//*属性:xx;*/p {/* 字体大小px是像素的意思 */</style>

2025-05-23 17:05:03 1078

原创 【HTML5学习笔记2】html标签(下)

0

2025-05-16 20:13:25 956

原创 【HTML5学习笔记1】html标签(上)

首页

2025-05-16 20:11:59 1312

原创 Joint Geometrical and Statistical Alignment for Visual Domain Adaptation

本文提出了一种新的用于跨域视觉识别的无监督域自适应方法。我们提出了一个统一的框架,从统计和几何两个方面减少域间的差异,称为联合几何与统计对齐(JGSA)。具体来说,我们学习两个耦合投影,将源域和目标域的数据投影到低维子空间中,同时减少几何差异和分布差异。目标函数可以通过闭式形式高效求解。大量实验证明,在合成数据集和三个不同的现实世界跨域视觉识别任务中,该方法显著优于几种最先进的域自适应方法。我们首先定义术语。源域数据表示为Xs∈RD×nsXs​∈RD×ns​,从分布P。

2025-05-14 13:22:02 651

原创 Ensemble Alignment Subspace Adaptation Method for Cross-Scene Classification

本文提出了一种用于跨场景分类的集成对齐子空间自适应(EASA)方法,它可以解决同谱异物和异谱同物的问题。该算法将集成学习的思想与域自适应(DA)算法相结合。考虑到原始数据(OD)的样本不均衡问题,通过按照一定规则对原始数据进行多次随机采样得到源数据(SD),并将其作为输入。然后,对源数据和目标数据(TD)进行几何对齐和统计对齐,构建公共子空间,进而对目标数据进行分类。最后,通过对多次分类结果进行计数并保留有效信息,对分类标签进行集成。该技术能够降低生成子空间投影的不确定性和随机性。

2025-05-13 20:58:14 813

原创 Learning Unified Anchor Graph for Joint Clustering of Hyperspectral and LiDAR Data

多模态遥感(RS)数据的联合聚类在地球观测中是一项关键且具有挑战性的任务。尽管近年来多视图子空间聚类取得了显著进展,但现有方法在处理大规模遥感数据集时计算成本过高。此外,它们忽略了异构遥感数据之间固有的非线性和空间相关性,并且对样本外数据缺乏泛化能力,从而限制了其适用性。本文介绍了一种名为基于锚的多视图核子空间聚类与空间正则化(AMKSC)的新颖统一框架。它在核空间中学习可扩展的锚图,利用每种模态的贡献,而不是在特征空间中寻求一致的全图。为确保空间一致性,我们在公式中纳入了空间平滑操作。

2025-05-13 15:30:37 759

原创 Hierarchical Sparse Subspace Clustering (HESSC): An Automatic Approach for Hyperspectral Image Analy

为了更好地理解所提出算法的概念,我们首先介绍稀疏字典学习的概念。设Yy1y2yNT∈RD×NYy1​y2​...yN​T∈RD×N表示高光谱图像,其中NNN是像素数量,DDD是YYY中的光谱带数量(yiyi1yi2yiDTyi​yi1​yi2​...yiD​T表示YYY中第iii个像素的测量光谱,i∈12Ni∈12...N是高光谱图像中的像素索引)

2025-05-11 11:13:12 1120

原创 HyUniDA: Breaking Label Set Constraints for Universal Domain Adaptation in Cross-Scene Hyperspectr

尽管针对跨场景高光谱图像(HSI)分类已提出了大量的域自适应(DA)方法,但大多数DA方法在很大程度上依赖于源域和目标域标签集之间关联的先验知识(包括封闭集、部分集和开放集DA),这严重限制了它们的应用。实际应用场景通常需要在对标签空间无限制的域之间进行知识转移,这被称为通用域自适应(UniDA)。在本文中,我们提出了HyUniDA,这是首次尝试在高光谱图像领域解决UniDA场景问题。HyUniDA主要包含两个部分:共享语义配对(SSP)和域相似性得分(DSS)。

2025-05-11 11:09:58 661

原创 Discriminative and domain invariant subspace alignment for visual tasks

迁移学习和域适应是解决训练集(源域)和测试集(目标域)分布不同问题的有效方案。在本文中,我们研究了无监督域适应问题,即目标样本没有标签,而源域样本标签完整。我们通过寻找不同的转换矩阵,将源域和目标域都转换到不相交的子空间中,使得转换空间中每个目标样本的分布与源样本相似。此外,通过非参数准则(最大平均差异,MMD)最小化转换后的源域和目标域之间的边际和条件概率差异。因此,利用类间最大化和类内最小化来区分源域中的不同类别。另外,通过样本标签保留源数据和目标数据的局部信息,包括数据的几何结构。

2025-05-10 22:17:21 1084

原创 Single-source Domain Expansion Network for Cross-Scene Hyperspectral Image Classification

目前,跨场景高光谱图像(HSI)分类受到越来越多的关注。当目标域(TD)需要实时处理且不能用于训练时,有必要仅在源域(SD)上训练模型,然后直接将模型迁移到目标域。基于域泛化的思想,本文开发了一种单源域扩展网络(SDEnet),以确保域扩展的可靠性和有效性。该方法使用生成对抗学习在源域中进行训练,并在目标域中进行测试。

2025-05-10 21:58:49 1060

原创 MULTI-MODAL DOMAIN GENERALIZATION FOR CROSS-SCENE HYPERSPECTRAL IMAGE CLASSIFICATION

大规模预训练图文基础模型在众多下游应用中表现卓越。然而,大多数域泛化技术从未关注挖掘语言模态知识以提升模型泛化性能。此外,在高光谱图像分类(HSI)任务中,文本信息也一直被忽视。为解决上述不足,本文提出了一种多模态域泛化网络(MDG),旨在从跨域共享语义空间中学习跨域不变表示。该方法仅利用源域(SD)进行训练,训练完成后将模型直接应用于目标域(TD)。MDG通过双流架构,即图像编码器和文本编码器,分别提取视觉和语言特征。同时,设计了一个生成器以获取与源域不同的扩展域(ED)样本。

2025-05-10 21:53:02 1143

原创 Cross-Scene Hyperspectral Image Classification With Discriminative Cooperative Alignment

跨场景分类是高光谱图像(HSI)分类面临的主要挑战之一,尤其是在目标场景没有标记样本的情况下。大多数传统的域适应方法通过学习一个域不变子空间来减少统计偏差,但忽略了一个事实,即当源域和目标域的边缘分布差异很大时,可能不存在共享子空间。此外,对于高光谱图像分类来说,保留原始空间中的判别信息也非常重要。为了解决这个问题,本文提出了子空间和分布的判别性协同对齐(DCA)方法,以协同减少几何和统计偏差。在该框架中,同时考虑了几何对齐和统计对齐,在保留判别信息的同时学习两个域的子空间。

2025-05-10 21:37:52 754

原创 DUAL GRAPH CROSS-DOMAIN FEW-SHOT LEARNING FOR HYPERSPECTRAL IMAGE CLASSIFICATION

在跨场景高光谱图像(HSI)分类任务中,大多数域适应(DA)方法主要针对源数据(SD)和目标数据(TD)由同一传感器获取且类别相同的情况。然而,当目标数据中出现新类别时,分类性能会显著下降。此外,大多数方法基于局部空间信息进行域对齐,很少考虑具有强对应关系的非局部空间信息(非局部关系)。本文提出了一种双图跨域少样本学习(DG - CFSL)框架,试图通过将少样本学习(FSL)与域对齐相结合来弥补上述不足。利用所有标记样本的源数据和少量标记样本的目标数据进行少样本学习的情节训练。

2025-05-10 21:06:51 1033

原创 Cross-Scene Joint Classification of Multisource Data With Multilevel Domain Adaption Network

域自适应(DA)是一项具有挑战性的任务,它整合来自源域(SD)的知识,以对目标域进行数据分析。现有的大多数DA方法只关注单源单目标设置。相比之下,多源(MS)数据协作利用已在各种应用中广泛使用,然而如何将DA与MS协作相结合仍然面临巨大挑战。在本文中,我们提出了一种多级DA网络(MDA-NET),用于促进基于高光谱图像(HSI)和光探测与测距(LiDAR)数据的信息协作和跨场景(CS)分类。在此框架中,构建了与模态相关的适配器,然后使用互助分类器聚合从不同模态捕获的所有判别信息,以提高CS分类性能。

2025-05-10 16:33:32 671

原创 【文献阅读笔记】MMAnet:Margin-Aware Distillation and Modality-Aware Regularization for Incomplete Multimodal

特点传统统一模型MMANet 统一模型是否适应模态缺失?是是是否学习模态特定信息?否是(MAD 解决)是否能处理弱模态组合?否是(MAR 解决)是否需要多个模型?否否计算成本低低设计更智能的统一模型,同时学习模态不变信息和模态特定信息。在不同模态组合(强模态、弱模态)下都能保持较好的表现,弥补传统统一模型的不足。如果你想更深入了解 MMANet 的具体公式、实验结果或代码实现,可以告诉我,我可以进一步解析!

2025-02-17 15:54:17 1166 1

原创 【文献阅读笔记】MSH-Net: Modality-Shared Hallucination With Joint Adaptation Distillation for Remote Sensin

Privilege Modality Hallucination Method 是一种基于特权模态的知识蒸馏或生成方法,旨在补全推理阶段缺失的模态信息。但传统方法的局限性促使研究者引入模态共享幻觉(MSH),以更高效地利用多模态数据,提高模型的适应能力和扩展性。

2025-02-14 14:19:33 1148

原创 【文献阅读笔记】Multimodal Learning with Incomplete Modalities by Knowledge Distillation

多模态学习(Multimodal Learning,MML)是一种利用 多个模态(Modalities)进行信息融合和建模的机器学习方法。每个模态可以是不同类型的数据来源,例如:● 视觉(图像、视频)● 语音(音频、语音信号)● 文本(自然语言、代码)● 传感器数据(医学影像、遥感数据、生物信号)● 社交媒体数据(文本 + 图像 + 交互信息)这些模态提供 互补信息 或 冗余信息,通过有效融合不同模态,模型可以比单模态系统获得更好的表现。

2025-02-13 11:27:06 1302

原创 Multimodal Learning with Incomplete Modalities by Knowledge Distillation

通过知识蒸馏进行不完全模态的多模态学习王琦1, 展亮2,3, Paul Thompson4, 周佳玉1 1.密歇根州立大学计算机科学与工程学院,密歇根州东兰辛市 2.匹兹堡大学电气与计算机工程系,宾夕法尼亚州匹兹堡 3.匹兹堡大学生物工程系,宾夕法尼亚州匹兹堡 4.南加州大学 Marina del Rey 影像遗传学中心 {wangqi19,jiayuz}@msu.edu;liang.zhan@pitt.edu;pthomp@usc.edu多模态学习旨在利用来自多种数据模态的信息来提高泛化性能。一种常见的

2025-02-11 19:02:55 820

原创 A Novel Approach to Incomplete Multimodal Learning for Remote Sensing Data Fusion

在遥感数据融合任务中,多模态Transformer网络成功的关键在于通过自注意力操作连接多模态信号的机制。然而,传统方法假定在训练和推理过程中可以获取所有模态数据,这使得在下游应用中处理模态不完整的输入时,性能会严重下降。为解决这一局限,我们提出了一种在遥感数据融合和多模态Transformer背景下的不完全多模态学习新方法。该方法可用于监督学习和自监督预训练范式。它利用额外学习的融合令牌,结合模态注意力和掩码自注意力机制,在多模态Transformer中收集多模态信号。

2025-02-11 18:38:52 1211

原创 MMANet: Margin-aware Distillation and Modality-aware Regularization for Incomplete Multimodal Learn

多模态学习在众多场景中展现出巨大潜力,近来受到越来越多的关注。然而,它常常面临模态数据缺失的问题,在实际应用中性能会严重下降。为此,我们提出了一个名为MMANet的通用框架来辅助不完全多模态学习。它由三个部分组成:用于推理的部署网络、将综合多模态信息传递给部署网络的教师网络,以及引导部署网络平衡弱模态组合的正则化网络。具体而言,我们提出了一种新颖的边界感知蒸馏(MAD)方法,通过用分类不确定性对样本贡献进行加权来辅助信息传递。这鼓励部署网络关注决策边界附近的样本,并获得更精细的类间边界。

2025-02-11 18:21:58 913

原创 MSH-Net: Modality-Shared Hallucination With Joint Adaptation Distillation for Remote Sensing Image

基于学习的多模态数据因其强大的性能,在遥感领域受到越来越多的关注。尽管在训练时收集多种模态数据更为理想,但由于成像条件的限制,在实际应用场景中并非所有模态都能获取。因此,如何在模态缺失的情况下辅助模型进行推理,对于多模态遥感图像处理至关重要。在这项工作中,我们提出了一种通用框架——模态共享幻觉网络(MSH-Net),通过从不完全的推理模态中重建完整的模态共享特征来解决这一问题。与传统的特权模态幻觉方法相比,MSH-Net不仅有助于在模型推理时保留跨模态交互,还能随着缺失模态数量的增加很好地扩展。

2025-02-11 15:09:44 1211

原创 A Critical Review of Artificial Intelligence Based Approaches in Intrusion Detection

入侵检测(ID)对于保护计算机网络免受各种恶意攻击至关重要。机器学习(ML)、深度学习(DL)、联邦学习(FL)和可解释人工智能(XAI)的最新进展作为ID的潜在方法受到了广泛关注。基于DL的方法通过自动从数据中学习相关特征,在ID中表现出了令人印象深刻的性能,但需要大量的标记数据和计算资源来训练复杂模型。基于ML的方法需要较少的计算资源和标记数据,但其对未见数据的泛化能力有限。

2024-12-30 11:05:09 786

原创 深度学习笔记2:使用pytorch构建神经网络

基本组件:输入层、隐藏层、输出层、激活函数、损失函数和学习率在这里使用简单数据集利用pytorch构建神经网络,利用张量对象操作和梯度值计算更新网络权重。

2024-12-25 23:06:14 515

原创 深度学习笔记1:神经网络与模型训练过程

训练神经网络主要是通过重复两个关键步骤,及用给定的学习率进行前向传播和反向传播,最终得到最佳权重。

2024-12-25 21:10:45 653

原创 A Novel State Space Model with Local Enhancement and State Sharing for Image Fusion

在图像融合任务中,不同来源的图像具有不同的特征。这推动了众多方法的发展,以探索更好的融合方式,同时保留各自的特性。Mamba作为一种状态空间模型,在自然语言处理领域崭露头角。最近,许多研究尝试将Mamba扩展到视觉任务中。然而,由于图像的性质不同于因果语言序列,Mamba有限的状态容量削弱了其对图像信息建模的能力。此外,Mamba的序列建模能力仅能处理空间信息,无法有效捕捉图像中丰富的光谱信息。受这些挑战的驱动,我们针对图像融合任务定制并改进了视觉Mamba网络。

2024-12-24 13:47:27 913

原创 DUDB: Deep Unfolding-Based Dual-Branch Feature Fusion Network for Pan-Sharpening Remote Sensing Im

所提出的方法旨在通过从全色(PAN)图像和多光谱(MS)图像中提取空间和光谱特征来增强高分辨率MS图像(HRMS)的融合。然而,现有的泛锐化方法往往存在空间和光谱细节信息缺失的问题。为了更好地保留这些细节,我们引入了一种基于深度展开的双分支特征融合泛锐化网络。在该网络中,我们利用算法展开迭代模块(AUIF块)从MS和PAN图像中连续获取详细信息以进行图像重建。通过利用自适应通道和空间特征增强模块(DEM块),网络可以自适应地调整空间和通道特征,从而实现更准确的特征提取和更完整的图像重建。

2024-11-13 16:40:37 936

原创 Remote Sensing Image Fusion With Deep Convolutional Neural Network

在这一部分中,我们将展示旨在找到最佳参数以充分表达整个网络的训练过程。设x1和x2表示一对下采样的MS和PAN图像。设y表示标签(原始MS图像)。然后,训练集表示为{x(i)1,x(i,2,y(i)}iN=1,其中N是样本数。该训练过程的目标是获得函数f:yˆ=f(x1,x2),其中y \710]是预测的高分辨率MS图像。

2024-11-12 15:21:19 384

原创 【文献阅读笔记】SSR-NET: Spatial–Spectral Reconstruction Network for Hyperspectral and Multispectral Image F

动机:重建HR-HSi(高分辨率-高光谱)时难以实现空间模式和光谱模式的跨(交叉)模式信息融合。贡献:基于卷积神经网络,提出一种可解释的光谱重建网络,SSR-NET,有效将HSI与MSI融合。是一种物理straightforward模型:1)跨模式消息插入CMMI:产生初步融合的hr-hsi 保留LRHIS HRMSI最有价值的信息2)空间网络重构:集中于空间边缘丢失指导下重建的LRHSI丢失的空间信息3)光谱网络重构:空间边缘损失的约束下重建HRMSI丢失的光谱信息。

2024-11-11 22:53:33 1448

原创 【文献阅读笔记】Multispectral and Hyperspectral Image Fusion by MS/HS Fusion Net

1. 网络参数 ( \Theta )( \Theta )是网络的总参数集合,包含了网络中所有需要学习的参数。这些参数在训练过程中会通过优化算法自动调整,以最小化损失函数并提升网络的性能。卷积核(Filters):用于卷积操作的权重,尤其是用于残差网络(ResNet)中的卷积层。全连接层的权重:如果网络中包含全连接层(Dense Layer),那么这些层的权重也包含在 ( \Theta ) 中。偏置项(Bias):网络中的各个层通常会有偏置参数,用于调整激活函数的输出。2. 迭代过程中的参数。

2024-11-11 22:44:12 1382

原创 Multispectral and Hyperspectral Image Fusion by MS/HS Fusion Net

与传统图像系统相比,高光谱成像有助于更好地理解不同材料的特性。然而,在实际应用中,通常只能以视频速率捕获高分辨率多光谱(HrMS)和低分辨率高光谱(LrHS)图像。在本文中,我们提出了一种基于模型的深度学习方法,用于合并HrMS和LrHS图像以生成高分辨率高光谱(HrHS)图像。具体而言,我们构建了一个新颖的MS/HS融合模型,该模型考虑了低分辨率图像的观测模型以及HrHS图像沿光谱模式的低秩性知识。然后,我们设计了一种迭代算法,通过利用近端梯度法来求解该模型。

2024-11-09 11:38:37 1244 1

原创 Python 字符串replace函数

str.replace (old,new)只有在print中函数才能正常执行,不写print,替换无效如图

2022-10-04 17:41:53 338

原创 CSDN21天学习挑战赛——索引查找算法学习笔记

索引查找算法学习笔记

2022-08-21 12:29:05 259 2

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除