质数相关算法 C++实现

题目一 质数的判定

图源ACWING

题解

  1. 判断是否小于2;
  2. 遍历从2到sqrt(a),判断是否能整除;

代码实现

#include<iostream>
#include<algorithm>
#include<cmath>

using namespace std;

void is_prime(int x)
{
    if(x < 2)
    {
        cout << "No" << endl;
        return ;
    }
    
    int sq = sqrt(x);
    
    for(int i = 2;i <= sq;i ++ )
    {
        if(x % i == 0)
        {
            cout << "No" << endl;
            return ;
        }
    }
    
    cout << "Yes" << endl;
}

int main()
{
    int n, a;
    
    cin >> n;
    
    while(n -- )
    {
        scanf("%d", &a);
        is_prime(a);
    }
    return 0;
}

题目二 分解质因数

图源ACWING

题解

  1. 遍历从2到sqrt(n),判断能否整除;
  2. 能整除则将n循环整除求指数;
  3. 若除完后n大于1,则证明其为质数,输出本身即可;

代码实现

#include<iostream>
#include<algorithm>
#include<cmath>

using namespace std;

void divi(int n)
{
    int sq = sqrt(n);
    
    for(int i = 2;i <= sq;i ++ )
    {
        if(n % i == 0)
        {
            int s = 0;
            while(n % i == 0)
            {
                n /= i;
                s ++ ;
            }
            printf("%d %d\n", i, s);
        }

    }
    
    if(n > 1)
    {
        printf("%d %d\n", n, 1);
    }
    cout << endl;
}

int main()
{   
    int n;
    cin >> n;
    
    int a;
    
    while(n -- )
    {
        scanf("%d", &a);
        divi(a);
    }
    
    return 0;
}

题目三 筛质数

图源ACWING

埃式筛法

题解思路

  1. 从小到大遍历所有点,删除掉其中质数的倍数;
  2. 剩下的未被删除的就是质数;

代码实现

#include<iostream>
#include<algorithm>

using namespace std;

const int N = 1e6 + 10;
bool st[N];
int cnt;

int main()
{
    int n;
    
    cin >> n;
    
    for(int i = 2;i <= n;i ++ )
    {
        if(!st[i])
        {
            cnt ++ ;
            for(int j = i * 2;j <= n;j += i)
            {
                st[j] = true;
            }
        }
    }
    
    cout << cnt;
    return 0;
}

线性筛法(最快)

题解思路

  1. 从小到大遍历所有数,并判断是否被筛掉(是否为质数);
  2. 若没有被筛掉,则放入数组中,同时结果++;
  3. 只用最小的质数去筛掉其他数(最小的质数的倍数);

代码实现

#include<iostream>
#include<algorithm>
#include<cmath>

using namespace std;

const int N = 1e6 + 10;
bool st[N];
int cnt;
int prime[N];

int main()
{
    int n;
    
    cin >> n;
    
    for(int i = 2;i <= n;i ++ )
    {
        if(!st[i])
        {
            prime[cnt ++ ] = i;
        }
        
        for(int j = 0;prime[j] <= n / i;j ++ )
        {
            st[prime[j] * i] = true;
            if(i % prime[j] == 0)//如果不是i的最小的质数,则跳出循环;
            {
                break;
            }
        }
        
    }
    
    cout << cnt;
    return 0;
}

具体代码解释

在这里插入图片描述
原链接:https://www.acwing.com/solution/content/100707/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值