0-1背包 动态规划求解问题(学习笔记)

本文介绍了使用动态规划解决0-1背包问题的方法,通过状态转移方程详细展示了如何计算F(4,8),即在背包容量为8的情况下,如何选择4件物品以获得最大价值。通过实例代码演示了物品重量、价值和最优解的过程。
摘要由CSDN通过智能技术生成

问题描述

现有四个物品,小偷背包容量为8,怎么可以偷得价值最多的物品?

物品信息如下:

物品编号1234
物品重量2345
物品价值3458

记F(k,w),即可以偷前k件物品,背包容量为w下所能偷到的最大价值

以F(4,8)为例

 状态转移方程为:

012345678
0000000000
1:(w=2,v=3)003333333
2:(w=3,v=4)003447777
3:(w=4,v=5)003457899
4:(w=5,v=8)00345881112

#include <iostream>
#include <algorithm>
#include <string.h> //memset的头文件

using namespace std;

int F[5][9]={0};
int w[5]={0,2,3,4,5};
int v[5]={0,3,4,5,8};

int main()
{
    memset(F,0,sizeof(F));
    for(int i=1;i<=4;i++)
    {
        for(int j=1;j<=8;j++)
        {
            if(w[i]>j)
            {
                F[i][j]=F[i-1][j];
            }
            else
            {
                F[i][j]=max(F[i-1][j],F[i-1][j-w[i]]+v[i]);
            }
        }
    }
    for(int i=1;i<=4;i++)
    {
        for(int j=1;j<=8;j++)
        {
            cout<<"F["<<i<<"]"<<"F["<<j<<"]"<<"="<<F[i][j]<<endl;
        }
    }
    return 0;
}

学习视频:

动态规划DP0-1背包_哔哩哔哩_bilibili算法:动态规划01背包https://www.bilibili.com/video/BV1g7411B7SP?spm_id_from=333.337.search-card.all.click

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值