使用yolov8快速训练自己的数据集

该文指导如何创建conda虚拟环境并安装yolov8。通过pip或源码安装后,演示了检测图片的功能。接着,文章说明了如何训练COCO128数据集,并提供了训练自己数据集的步骤,包括创建软链接到数据集,编写yaml配置文件和Python脚本来启动训练。
摘要由CSDN通过智能技术生成

1、 首先使用conda 创建虚拟环境

conda create -n yolov8 python= 3.8

2、安装yolov8

方法一、

 pip install ultralytics

如果网络不行使用方法二、

git clone https://github.com/ultralytics/ultralytics
cd ultralytics
pip install -e .

git clone 下载不下来,就去官网下载zip, 然后解压。

3、

检测图片看一下效果

yolo predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg'

训练coco128的方法,运行下面代码即可


from ultralytics import YOLO

# 加载模型
model = YOLO("yolov8n.yaml")  # 从头开始构建新模型
model = YOLO("yolov8n.pt")  # 加载预训练模型(建议用于训练)

# 使用模型
model.train(data="coco128.yaml", epochs=3)  # 训练模型
metrics = model.val()  # 在验证集上评估模型性能
results = model("https://ultralytics.com/images/bus.jpg")  # 对图像进行预测
success = model.export(format="onnx")  # 将模型导出为 ONNX 格式

4.1、训练自己的数据集

数据集的怎么制作这里就不在讲解了,我使用的是自己的数据集,由于不想把数据集复制一份浪费空间,所以使用了软链接,一下就是我使用软连接实现的数据集训练,建议大家训练时数据集使用软链接。

我的数据集是VOC格式的,已经在yolov5里转换为yolo格式。

ln -s  /home/sdxx/magic/Yolov5/data  /home/sdxx/magic/ultralytics/data

4.2、在ultralytics目录下创建myyaml.yaml文件

path: /home/sdxx/magic/Yolov5/data   
train: train.txt 
val: val.txt 
test: test.txt  

# Classes
nc: 1  # number of classes
names: ["cat"]  # class names

4.3、 创建myyaml.py文件

from ultralytics import YOLO

# 加载模型
#model = YOLO("yolov8n.yaml")  # 从头开始构建新模型
model = YOLO("yolov8n.pt")  # 加载预训练模型(建议用于训练)

# 使用模型
model.train(data="cpvoc.yaml", epochs=300, batch=-1)  # 训练模型

4.4 输入python myyaml.py 就可以训练了

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值